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Abstract: Spectrum sensing is one of the most important components in any cognitive radio system that allows usage of the underutilized 

portions of the radio spectrum. First worldwide standard for cognitive radios to operate in the recently available TV bands is being formulated 
by IEEE 802.22 Working Group. For this standard to succeed, it is necessary that the presence of TV signals is detected using a reliable sensing 
mechanism. Spectrum sensing algorithm using statistical covariance and its variants have attracted lot of attention recently. Spectrum sensing 
algorithms based on statistical covariance have advantages over the conventional approach based on energy detection. Covariance based 
signal detection does not require apriority knowledge of noise power. Spectral covariance of the received signal for signal detection was 
proposed

 (2)
. The proposed algorithm exploits statistical correlation of the signal, in particular the pilot signal in frequency domain. Detection 

performance of this technique shows improved sensitivity compared to other pilot detection algorithms. The properties of the eigenvalue of 
the covariance matrix have also been used to detect the presence of radio signal. Random matrix theory has been employed to derive the 
probability of false alarm and probability of missed detection for eigenvalue based signal sensing. In this paper we propose to discuss different 
spectrum sensing approaches based on statistical covariance matrix and compare the performance metrics of each approach. Further, we will 
also suggest techniques to improve the performance of covariance based spectrum sensing approach. Techniques to apply these algorithms to 
a wider class of signals will also be discussed in this paper. 
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1. Introduction 
 

 Explosive growth in the number of wireless devices operating in the 
unlicensed as well licensed bands has resulted in severe shortage of 
radio spectrum. The multitude of wireless networks and protocols 
(e.g., Wi-Fi, Bluetooth, WiMAX etc.) Operating in the unlicensed 
bands and vying for their share of the spectrum has led to 
interference and performance degradation for all the users. However, 
recent studies by the Federal Communication Commission (FCC) in US 
and OFCOM have shown that at any given time and in any given 
geographic locality, less than 10% of the available spectrum in the 
licensed band is utilized. To exploit these underutilized parts of the 
spectrum (also referred to as white spaces or spectrum holes), the 
FCC has advocated development of a new generation of 
programmable, smart radios that can dynamically access various 
parts of the spectrum, including the licensed bands. Such radios 
would operate as secondary users in the licensed bands. These radios 
are required to possess the capabilities of spectrum usage sensing, 
environment learning and interference avoidance with the primary 
users of the licensed spectrum bands while simultaneously ensuring 

the quality of service (𝑄 𝑜 𝑆) requirements of both the primary and 
secondary users. Radios with such capabilities are referred to as 
cognitive radios (CRs) 
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Figure -1: Basic Cognitive Cycle 

2. System (Signal) Model 

Assume that the frequency band of interest has a central frequency fc 
and bandwidth W. During a particular time interval, the frequency 
band may be occupied by only one primary user. Several secondary 
users are randomly distributed in the cognitive radio network. Each 
secondary user is equipped with a single antenna. In this research 
work, the non-cooperative spectrum sensing scheme is considered, 
that is, the sensing work is completed by only one secondary user 
(only one source, one receiver). For signal detection, two hypotheses 
can be formulated:  

 hypothesis H0 : there exists no signal (only noise);  

 Hypothesis H1: there exists both the signal and additive white 
noise. The binary hypothesis test can be replaced by: H0 : x(n) = 
w(n), n = 0,1,··· 

 In a single radio based sensing approach, even the weak signals must 
be detected to avoid causing interference to primary receivers within 
its transmission zone. The basic hypothesis problem for transmitter 
detection is usually formulated as: 

H1: x n =  h k s n − k + w(n)n
k=0                              (1)  

Where x (n) denotes the discrete signal at the secondary receiver, s 
(n) is the primary signal seen at the receiver, h(k) is the channel 
response, N is the order of the channel, and w(n) are the noise 
samples. Considering a sub-sample M of consecutive outputs and 
defining 

Xˆ (n) = *x(n),x(n-1), …, x(n-M+1)]T 

Wˆ (n) = *w(n),w(n-1), …, w(n-M+1)]T 

Sˆ (n) = *S(n),S(n-1), …, S(n-N1-M+1)]T 

This result in 

Xˆ (n) = Hsˆ (n) + wˆ (n)                                             (2)  

Where  

H is an M x (N+M) matrix, defined as  

H=  ℎ 0 …ℎ 𝑁 …0
0…ℎ  0 …ℎ 𝑁                                         (3)    

Considering the statistical properties of the transmitted signal and 
channel noise, assume that the noise is white and that the noise and 
the transmitted signal are correlated. Let R be the covariance matrix 
of the received signal, that is, 

R=1/Ns X n XHM−1+Ns
n=m (n)                                  (4)          

Where Ns is the number of collected samples. If Ns is large, based on 
the assumptions made earlier, it is verified that 

R≈ E x n XH n  = HRsHH + σw
2 IM                      (5)                                                                                                   

Where Rs is the statistical covariance matrix of the input signal, Rs = 
E*sˆ(n)sˆH(n)] , σw2 is the variance of the noise, and IM denotes an M 
× M identity matrix.  

 

 

 

 

 

 

 

 

 

 

Figure - 2: Eigenvalue-Based Spectrum Sensing Algorithm Flow Chart 

Let λˆmax and λˆmin be the maximum and the minimum eigenvalues 
of R , and ρˆmax and ρˆmin be the maximum and the minimum 
eigenvalues of HRsHH. Then 

Λmax=ρmax + σw
2     and 

Λmin=ρmin + σw
2                                                           (6)  

                                                                                                           
obviously, ρˆmax = ρˆmin if and only if HRsHH = δIM where δ is a 
positive number.  

Again, obviously, when the primary signal is present 

Λmax=ρmax + σw
2     and Λmin= σw

2   

And when the primary Signal is absent then Λmax= Λmin=σw
2  

Hence, if there is no signal, λˆmax/λˆmin = 1; otherwise λˆmax/λˆmin 
> 1 

The ratio of λˆmax/λˆmin can be used to detect the presence of the 
primary signal. However, λˆmax and λˆmin are the estimated 
eigenvalues. 

2.1. Detection Algorithm Flow Chart  

Figure 2 illustrates the main parts of the proposed method. The 
sampled signal comes from the radio system interface, from which 
the covariance matrix is built. The eigenvalues of the matrix are the 
calculated with a specific algorithm to form a maximum-minimum 
ratio; with the users threshold settings defined and signal presence 
detection done through comparison with the eigenvalues ratio.  

2.2. Eigen-analysis of the Auto covariance Matrix 

To better explain the detection algorithm, the eigenvalues of the auto 
covariance matrix is necessary. It is assumed that the random process 
x (n) is, in a wide-sense, stationary and its linear combinations of m 
basic components Si (n) is given by  

 x n =  aiSi
m
i=1  n                                                             7   

Since the equation observed is y(n) = x(n) + w(n), where w(n) is a 
complex additive white Gaussian noise sequence with spectral 
density σ2, the M × M auto covariance matrix for y(n) can be 
expressed as  

Cyy=Cxx+𝛔𝐰
𝟐 𝐈                                                              (8)     
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Where Cxx is the autocovariance matrix for the signal x(n),   𝛔𝐰
𝟐 𝐈  is 

the autocovariance matrix for the noise and M is the length of the 
covariance matrix. Note that if M > m, then Cxx which is of dimension 
M × M is not of full rank.  

Now, an eigen-decomposition of the matrix Cyy is performed. Let the 
eigenvalues be ordered in decreasing value with λ1 ≥ λ2 ≥ ··· ≥ λM 
and let the corresponding eigenvectors be denoted as vi,i = 1,··· ,M. It 

is assumed that the eigenvectors are normalized so that Vi
HVj =

δij (H). 

Where H denotes the Conjugate of the transpose In the absence of 
noise, the eigenvalues λi, i= 1,2,··· ,m are nonzero while λm+1 = λm+2 
= ··· = λM = 0. Thus, the eigenvectors vi,i = 1,2,··· ,m span the signal 
subspace. These vectors are called principal eigenvectors and the 
corresponding eigenvalues are called principal eigenvalues. In the 
presence of noise, the Eigen-decomposition separates the 
eigenvectors in two sets. The set vi,i = 1,2,··· ,m, which are the 
principal eigenvectors, span the signal subspace, while the set vi,i = m 
+ 1,··· ,M, which are orthogonal to the principal eigenvectors, are said 
to belong to the noise subspace. It follows that the signal x(n) is 
simply linear combinations of the principal eigenvectors. Finally, the 
variances of the projections of the signal on the principal 
eigenvectors are equal to the corresponding eigenvalues of the 
covariance matrix. So, the principal eigenvalues are the power factors 
in the new signal space. In the next subsection, the real maximum 
eigenvalue λˆmax and minimum eigenvalue λˆmin of the covariance 
matrix of the received signal will be obtained.  

2.3. Power Method 

In this section, the power method is exploited in order to calculate 
λmax and λmin for the detection of the primary signal. This way, the 
eigenvalues can be obtained by simple algebraic operations. This 
method reduces computational complexity since the eigenvalue 
decomposition processing is avoided. It is well known that the power 
method is an effective method to compute the maximum eigenvalue 
and the corresponding eigenvector (commonly referred to as 
maximum eigenvector) for a real-valued matrix B. It is important to 
note that this method is still very effective even if B is a complex 
valued matrix. To get a more precise result, the minimum eigenvalue 
λmin of R is computed as follows 

Λmin=   
𝐭𝐫 𝐑 −𝛌𝐦𝐚𝐱

𝐌−𝟏
 

Where tr (R) represents the trace of R. Finally, the test statistic of the 
optimal detector is obtained: = λmax/λmin 

3. Computational Complexity 

Here, the computational complexity of the power method and 
eigenvalue decomposition when computing eigenvalues is briefly 
investigated. O (n3) is used to represent the order of n3 
multiplications. The eigenvalue decomposition processing solves for 
the complete set of eigenvalues and eigenvectors of the matrix even 
if the problem requires only a small subset of them to be computed. 
For the n × n matrix B, eigenvalue decomposition calls for 2n3 (t+1) 
real multiplications where t is the maximum number of iterations 
required to reduce a super-diagonal element as to be considered zero 
by the convergence criterion [14]. Thus the computational complexity 
of eigenvalue decomposition is O (n3). The idea of the power method 

is only to compute the principal eigenvalues and eigenvectors. The 
method only consists of two main computational steps:  

 Obtaining the iteration vector vk by computing vk = Bvk−1  

 Computing vk = vk/mk in (10)  

Since vk is an n × 1 vector, the computation of these two steps calls 
for 4n2 and 4n real multiplications, respectively. Suppose the number 
of iterations is S, then the total number of real multiplications is 4S 
(n2+n), that is, the computational complexity of the power method 
has a lower computational complexity than the eigenvalue 
decomposition processing when computing eigenvalues. 

4. Threshold Definition  

In the general model of the spectrum sensing algorithm, a threshold 
must be determined to compare with a test statistic of the sensing 
metric in order to sense the presence of a primary user. 
Consequently, to find the threshold for the statistical test, it is 
important to study the statistical distribution of the covariance 
matrix. The eigenvalue distribution of R is very complicated [15]. 
Moreover, there is little or no information about the signal. In fact, it 
is difficult to know whether the signal is present or not. This in turn 
makes the choice of the thresholds very difficult. Therefore, in this 
subsection, random matrix theory is used to approximate the 
distribution of this random variable and derive the decision threshold 
based on the pre-defined probability of false alarm, PFA.When the 
primary signal is absent, R turns to Rw, the covariance matrix of the 

noise defined as  Rw =
1

Ns

 w n wHM−1+Ns
n=m (n) .Rw is nearly a 

Wishart random matrix [15].  

 

Figure - 3. Probability of Detection versus SNR for Different Probability of False 
Alarm 

In recent years, the study of the eigenvalue distributions of a random 
matrix has become a very hot topic in the fields of mathematics, 
communication and even physics. The joint probability density 
function (PDF) of ordered eigenvalues of a Wishart random matrix 
has been known for many years [15]. However, since the expression 
for the PDF is very complicated, no closed form expression has been 
found for the marginal PDF of ordered eigenvalues. Recently though, 
researchers have found the distribution of the largest eigenvalue [10] 
and smallest eigenvalue [8] for real and complex matrices.  

5. Simulations  

In the following section, some simulation results are given using 
randomly generated signals to illustrate the performance of the 
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proposed optimal detection method. Consider a licensed frequency 
band in the cognitive radio network with only one active primary 
user. The primary signal employs Binary Phase Shift Keying (BPSK) 
modulation and the center frequency is 8 MHz. the sampling rate is 
set at 32 MHz. Ns is the number of samples and P is the temporal 
smoothing factor. The results are averaged over 1000 tests using 
Monte-Carlo realizations (for each realization, random channel, 
random noise and random BPSK inputs are generated) written in 
Matlab. The SNR of a CR is defined as the ratio of the average 
received signal power to the average noise power over the licensed 
frequency band. 

SNR=
E( X n −W n  2)

E( W n  2)
     (9) 

 The probability of false alarm is required to be PFA ≤ 0.1, then the 
threshold is found. For Comparison, energy detection is also 
simulated with noise uncertainty for the same system. The threshold 
for energy detection is given in [3]. At noise uncertainty, the 
threshold is always set based on assumed/estimated noise power. 
Figure 3 shows the probability of detection curves for optimal-
detection and Energy Detection (ED). The results are taken for Ns = 
100000 and SNRs varying from −20dB to 0dB. In the optimal detector, 
the temporal smoothing factor is 8. As shown in the figure, the 
proposed optimal-detection method can achieve satisfactory 
detection performance even in low SNR conditions. For example, the 
optimal-detection method can detect primary user signals with 99% 
probability at SNR of −10dB. However, the detection probability of ED 
is less than 70% percent. From the figure, we can also see that for the 
same SNR, the probability of detection improves as probability of 
false alarm. 

 

Figure - 4. Probability of Detection versus SNR for Different Temporal 
Smoothing 

 

Figure - 5. Performance Comparison of Different Sensing Methods with PFA= 
0.05 Increases.   

This reflects the trade-off between false alarm and detection 
probability. The probability of detection versus SNR for different 
temporal smoothing factors is shown in Figure 4.The results are taken 
for PFA = 0.1, and SNRs varying from −20dB to 2dB. It is shown that 
the detection performance becomes better when P increases from 12 
to 24. However, when P turns to 48, the performance detection 
declines. Therefore, P should be relatively small while using this 
technique for a given number of samples. Figure 5 shows the 
performance comparison of the optimal detection technique, the 
MME detection and energy detection. In MME detection, 4 receiving 
antennas are used for sensing in the radio environment while the 
optimal detector has a temporal smoothing factor of 16. For all the 
three methods, a probability factor of PFA = 0.05 is chosen and SNR 
varied from −20dB to 0dB. As shown on the figure, the proposed 
optimal detection technique performs better than the energy 
detection method.  

Also, it can be observed that both MME detection and optimal-
detection can detect the primary user signal with 100% probability 
when the SNR is more than −10dB. The performance of the Optimal-
detection technique is very close to that of MME detection when the 
SNR is less than −10dB. For example, the detection probabilities of 
MME detection and optimal-detection are 0.820 and 0.800 at SNR 0f 
−13dB respectively. The biggest performance gap between these two 
methods is only 0.051 with change in SNR. In other words, the 
proposed optimal-detection method can achieve roughly the same 
performance as MME detection by using a single antenna. The main 
reason for this is that the processed data of these two methods have 
similar structures. The information about the primary user signal is 
perfectly contained in the data model of both methods, thus they can 
achieve roughly the same performance.  

In summary, all the simulations show that the proposed method 
works well without using the information of the signal, channel and 
noise power. The optimal-Detection technique is always better than 
the energy detection method. Therefore energy detection method is 
not reliable since it has a low probability of detection and high 
probability of false alarm when there is noise uncertainty. Figure 5 
shows the performance comparison of the optimal detection 
technique, the MME detection and energy detection. In MME 
detection, 4 receiving antennas are used for sensing in the radio 
environment while the optimal detector has a temporal smoothing 
factor of 16. For all the three methods, a probability factor of PFA = 
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0.05 is chosen and SNR varied from −20dB to 0dB.As shown on the 
figure, the proposed optimal detection technique performs better 
than the energy detection method.  

Also, it can be observed that both MME detection and optimal-
detection can detect the primary user signal with 100% probability 
when the SNR is more than −10dB. The performance of the Optimal-
detection technique is very close to that of MME detection when the 
SNR is less than −10dB. For example, the detection probabilities of 
MME detection and optimal-detection are 0.820 and 0.800 at SNR 0f 
−13dB respectively. The biggest performance gap between these two 
methods is only 0.051 with change in SNR. In other words, the 
proposed optimal-detection method can achieve roughly the same 
performance as MME detection by using a single antenna. The main 
reason for this is that the processed data of these two methods have 
similar structures. The information about the primary user signal is 
perfectly contained in the data model of both methods, thus they can 
achieve roughly the same performance. In summary, all the 
simulations show that the proposed method works well without 
using the information of the signal, channel and noise power. The 
optimal-Detection technique is always better than the energy 
detection method. Therefore energy detection method is not reliable 
since it has a low probability of detection and high probability of false 
alarm when there is noise uncertainty. 

6. Conclusions  

A method based on the eigenvalues of the sample covariance matrix 
of the received signal has been proposed using a single antenna for 
cognitive radio networks. A temporal smoothing technique is utilized 
to form a virtual multi-antenna structure. In order to calculate the 
maximum and minimum eigenvalues of the covariance matrix 
obtained by the virtual multi-antenna structure, the proposed 
method uses power method. Latest random matrix theories have 
been used to set the decision thresholds and obtain the probability of 
detection in order to achieve a good detection performance. 
Simulations using randomly generated signals are presented in order 
to illustrate the performance of the Optimal-detection method. It has 
been shown that the performance of optimal detection is very close 
to that of the MME detection with multiple antennas. The method 
can be used for various signal detection applications without 
knowledge of signal, channel and noise power. Besides, the proposed 
optimal-detection method can reduce system overhead and avoid 
the eigenvalue decomposition processing by utilizing power method. 
The energy detector is known for its simplicity of implementing and 
low complexity. However, its weakest point is that it is not effective 
under the condition that SNR is an unknown, consequently leading to 
its unguaranteed accuracy. The eigenvalue-based technique on the 
other hand, is not as stable as the cyclo stationary technique since its 
threshold varies greatly as it needs to solve the problem of 
appropriately estimating the size of the covariance matrix. The 
advantage of the optimal detector, however, is that it does not 

require knowledge of the primary user signal and performs better 
than the energy detector.  
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