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Abstract: This paper presents the study of three species ecological model with Prey N1, predator N2 and competitor to the Predator N3 and 
neutral with the predator N2 with imprecise biological parameters. The model is characterized by a set of first order nonlinear ordinary 
differential equations. Due to the lack of precise numerical information of the biological parameters such as prey population growth rate, 
predator population decay rate and predation coefficients, we consider the model with imprecise data as form of an interval in nature. Many 
authors have studied prey–predator harvesting model in different form, here we consider a simple prey–predator model under impreciseness 
and introduce parametric functional form of an interval and then study the model. Equilibrium points of the model are identified, the local 
stability is discussed using Routh - Hurwitz criteria and global stability by Liapunov function. The existence of bionomic equilibrium of the 
system has been discussed and optimal harvesting policy is given using Pontryagin’s maximum principle. The stability analysis is supported by 
Numerical simulation using Matlab. 

Keywords: Prey, Predator, Competitor to the predator, Equilibrium points, interval number, Stability of the equilibrium points, Bionomic 
Equilibrium, Optimal harvesting policy, Pontryagin’s maximum principle,  Numerical simulation using Matlab. 

1. Introduction 

Mathematical modeling of ecosystems is a field of study which helps 
us to understand the interactions between different species and the 
mechanisms that influence the growth of species and their existence 
and stability. Mathematical models have been used to study the 
dynamics of prey-predator systems since Lotka (1925) and Volterra 
(1927). They proposed the simple mathematical model which 
describes the interaction between prey and the predator. Since then, 
many mathematical models have been constructed based on more 
realistic explicit and implicit biological assumptions. Mathematical 
modeling is a frequently evolving process, to gain a deep 
understanding of the mathematical aspects of the problem and to 
yield non trivial biological insights; one must carefully construct 
biologically meaningful and mathematically tractable population 
models. Some of the aspects that need to be critically considered in a 
realistic and plausible mathematical model include; carrying capacity 
which is the maximum number of prey that the ecosystem can 
sustain in the absence of predator, competition among prey and 
predators which can be intraspecific or inter specific, harvesting of 
prey or predators and functional responses of the predators. In this 
research work, a mathematical model to study the ecological 

dynamics of prey and predator system is proposed and analyzed. And 
also as an example some of the prey and predator system in some 
areas be studied. 
  

1.1  Pre-Requisite Mathematics 

 
1.1.1 Interval Number 

Interval arithmetic, interval mathematics, interval analysis, or interval 
computation, is a method developed by mathematicians since the 
1950s and 1960s as an approach to putting bounds on rounding 
errors and measurement errors in mathematical computation and 
thus developing numerical methods that yield reliable results. Very 
simply, it represents each value as a range of possibilities. For 
example, instead of estimating the height of someone using standard 
arithmetic as 2.0 meters, using interval arithmetic we might be 
certain that person is somewhere between 1.97 and 2.03 meters. An 
interval number Α is represented by closed interval  𝑎𝑙 , 𝑎𝑟   and 
defined by: 

http://en.wikipedia.org/wiki/Rounding_error
http://en.wikipedia.org/wiki/Rounding_error
http://en.wikipedia.org/wiki/Measurement_error
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Numerical_methods
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𝐴 =  𝑎𝑙 , 𝑎𝑟  =  𝑥: 𝑎𝑙 ≤ 𝑥 ≤ 𝑎𝑟 , 𝑥 ∈ R  ; Where 𝑅 is the set of real 
numbers and 𝑎𝑙 , 𝑎𝑟  are the left and right limit of the interval number 
respectively. Also every real number 𝑎 can be represented by the 
interval number as [𝑎,𝑎] for all 𝑎 ∈ 𝑅. Classical arithmetic defines 
operations on individual numbers; interval arithmetic defines a set of 
operations on intervals.  

𝑇 · 𝑆 = { 𝑥 | there is some 𝑦 in 𝑇, and some 𝑧 in 𝑆, such that 
𝑥 =  𝑦 · 𝑧 }.The basic operations of interval arithmetic are, for two 
intervals [𝑎, b] and [c, d] that are subsets of the real line (−∞,∞), 

      ,,,, dbcadcba    

      ,,,, dbcadcba   
  𝑎, 𝑏 ×  𝑐, 𝑑 =  𝑚𝑖𝑛 𝑎 × 𝑐, 𝑎 × 𝑑, 𝑏 × 𝑐, 𝑏 × 𝑑 , 𝑚𝑎𝑥 𝑎 ×

𝑐, 𝑎 × 𝑑, 𝑏 × 𝑐, 𝑏 × 𝑑   
  𝑎, 𝑏 ÷  𝑐, 𝑑 =  𝑚𝑖𝑛 𝑎 ÷ 𝑐, 𝑎 ÷ 𝑑, 𝑏 ÷ 𝑐, 𝑏 ÷ 𝑑 ,𝑚𝑎𝑥 𝑎 ÷

𝑐, 𝑎 ÷ 𝑑, 𝑏 ÷ 𝑐, 𝑏 ÷ 𝑑  , when 0 is not in  𝑐, 𝑑  
Division by an interval containing zero is not defined under the basic 
interval arithmetic. Instead of working with an uncertain real 𝑥 we 
work with the two ends of the interval [𝑎, b]

 
which contains x  such 

that x  lies between 𝑎 and b, or could be one of them. Similarly a 

function 𝑓 when applied to x  is also uncertain. Instead, in interval 

arithmetic 𝑓 produces an interval [𝑎, b] which is all the possible 

values for 𝑓(𝑥) for all 𝑥 ∈  .,ba
  

 

1.1.2. Interval-Valued Function 

 Let 𝑎>0, b>0 and consider the interval [𝑎, b]. From a mathematical 
point of view, any real number can be represented on a line. Similarly, 
we can represent an interval by a function. If the interval is of the 
form [𝑎, b], the interval-valued function is taken as 

   

ba
pp

ph



1 for  1,0p .Here we present some arithmetic 

operations on interval valued functions as follows: Let 𝐴 =  𝑎𝑙 , 𝑎𝑢    
and 𝐵 =  𝑏𝑙 , 𝑏𝑢   be two interval numbers. 

Addition:𝐴 + 𝐵 =  𝑎𝑙 , 𝑎𝑢   +  𝑏𝑙 , 𝑏𝑢   =  𝑎𝑙 + 𝑏𝑙 , 𝑎𝑢 + 𝑏𝑢   
Provided 𝑎𝑙 + 𝑏𝑙 > 0. The interval-valued function for the 

interval BA 𝑖𝑠 given by 𝑕 𝑝 = 𝑎𝐿
(1−𝑝)𝑎𝑈

𝑝  where 𝑎𝐿 = 𝑎𝑙 + 𝑏𝑙
 and 𝑎𝑈 = 𝑎𝑢 + 𝑏𝑢 .  

Subtraction:𝐴 − 𝐵 =  𝑎𝑙 , 𝑎𝑢   −  𝑏𝑙 , 𝑏𝑢   =  𝑎𝑙 − 𝑏𝑙 , 𝑎𝑢 − 𝑏𝑢  . 
Provided𝑎𝑙 − 𝑏𝑙 > 0. The interval – valued function for the interva

BA is given by 𝑕 𝑝 = 𝑏𝐿
(1−𝑝)𝑏𝑈

𝑝  where 𝑏𝐿 = 𝑎𝑙 − 𝑏𝑙  
and 𝑏𝑈 = 𝑎𝑢 − 𝑏𝑢 . 

Scalar multiplication: 𝛼𝐴 = 𝛼 𝑎𝑙 , 𝑎𝑢  =  
 𝛼𝑎𝑙 , 𝛼𝑎𝑢  𝑖𝑓 𝛼 ≥ 0
 𝛼𝑎𝑢 , 𝛼𝑎𝑙 𝑖𝑓 𝛼 < 0

  

provided 𝑎𝑙 > 0 and 𝑎𝑢 > 0. The interval valued function for interval 

A is given by 𝑕 𝑝 = 𝑐𝐿
(1−𝑝)𝑐𝑈

𝑝 if 0 and 

 𝑕 𝑝 = −𝑑𝐿
(1−𝑝)𝑑𝑈

𝑝  If 0 , where ∁𝐿= 𝛼𝑎𝑙 , ∁𝑈= 𝛼𝑎𝑢 , 𝑑𝑈 =
 𝛼 𝑎𝑢  and 𝑑𝐿 =  𝛼 𝑎𝑙 . 
 

1.1.2  Pontryagin's Maximum Principle 

Pontryagin's maximum principle is a powerful method for the 
computation of optimal controls, which has the crucial advantage 
that it does not require prior evaluation of the informal cost function. 
Let 𝑏, 𝑐 and 𝐶 are differentiable function in 𝑡 and 𝑥 with continuous 
derivatives, and that the stopping set D is a hyper plane, thus 

   yD  for some 𝑦 ∈ ℝ𝑛  and some vector subspace of 

ℝ𝑛 .  

Define for 𝜆 ∈ ℝ𝑛  the Hamiltonian function as: 

Η 𝑡, 𝑥, 𝑢, 𝜆 = 𝜆𝑇𝑏 𝑡, 𝑥, 𝑢 − 𝑐 𝑡, 𝑥, 𝑢    

Pontryagin's maximum principle states that if  𝑥𝑡 , 𝑢𝑡 ≤ 𝜏 is optimal, 
then there exist adjoint 

Paths    
t t

 in ℝ𝑛  and    
t t

 in ℝ  with the following 

properties for all t  

   ttt
utH x ,,, has maximum value 0, at the point 𝑢 = 𝑢𝑡  

t

T

   uxux tttt

T

tctb
t

,,,,   

   uxux tttt

T

t
tctb

t
,,,,    

 uxx ttt
tb ,,   

Moreover the following transversality conditions hold: 𝑥𝑡 , 𝑢𝑡 ≤ 𝜏 

   0, 




    xC

T
 or all   and, in the time-

unconstrained case 

   0,  xC


   

Note that, in the time-unconstrained case, if 𝑏, 𝑐 and 𝐶 are time-

independent functions, then 0
t

for all 𝑡.The Hamiltonian 

serves as a way of remembering the first four statements, which 
could be expressed alternatively as: 
𝜕𝐻

𝜕𝑢
= 0,   −

𝜕𝐻

𝜕𝑥
= 𝜆,    −

𝜕𝐻

𝜕𝑡
= 𝜇,      

𝜕𝐻

𝜕𝜆
= 𝑥    

The condition 
𝜕Η

𝜕𝑢
= 0 is not always correct. For example in cases 

where the set of actions is an interval and where the maximum is 
achieved at an endpoint 
 

2. Model formulation and analysis 

In section deals with the mathematical modeling of the prey-predator 
dynamics where there are two predators which compete for the same 
limited resources. In addition, the section deals with the stability 
analysis of the equilibrium points and the numerical simulation of the 
model. 

Parameter  Parameter Definition  

R net economic rent 

𝐸𝑖 , 𝑖 = 1,2,3 harvesting efforts 

𝛿  instantaneous annual rate of discount 

𝑞𝑖 , 𝑖 = 1,2,3 catch ability coefficients 

𝑐𝑖 , 𝑖 = 1,2,3  harvesting cost per unit effort 

Table – 3: Definition of some parameters 

2.1 Prey–Predator Model 

The ecological model is as follows. There is one prey and two 
predators, where the two predators are competes with each other 
for the use of common recourse i.e. food. But the two predators 
cannot eat each other (one is not eaten by the other). By assuming 
that the predator and competitor to the predator have alternative 
food in addition to prey population (but the competitor to the 
predator can’t eat the prey population), then the model for one Prey 
and two Predator and harvesting on the both species is given by the 
following system of first order ordinary differential equations 
employing the following notation: Let N1 denotes the size of the prey 

http://en.wikipedia.org/wiki/Interval_%28mathematics%29
http://en.wikipedia.org/wiki/Real_%28number%29
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population, N2 denotes the size of the predator population and N3  
denotes the size of the competitor to the predator population, lets 
assuming that there is demand for all species in the market so the 
harvesting of both species are carried out. Let prey, predator and 
competitor to the predator species are subjected to harvesting 
efforts (effort applied to the harvest the prey, predator and 
competitor species) E1, E2 and E3 respectively. Then the dynamics of 
the prey-predator is described by: 

 
𝑑𝑁1

𝑑𝑡
=  𝑟𝑁1 − 𝛼1 𝑁1 

2 − 𝛽1𝑁1𝑁2 − 𝑞1Ε1𝑁1                             (3.1)                                                                    

 
𝑑𝑁2

𝑑𝑡
=  𝑠𝑁2 − 𝛼2 𝑁2 

2 + 𝛽2𝑁1𝑁2 − 𝛿1𝑁2𝑁3 − 𝑞2Ε2𝑁2        (3.2)
                                                        

 
𝑑𝑁3

𝑑𝑡
=  ℓ𝑁3 − 𝛼3 𝑁3 

2 − 𝛽3𝑁2𝑁3 − 𝑞3Ε3𝑁3                            (3.3)
                                                                       Where 𝑟, 𝑠 and ℓ are natural growth rate of prey, predator and 

competitor to the predator species respectively. Whereas: 
𝛼1: rate of decrease of the prey population due to inter species 
competition 
𝛽1: Rate of decrease of the prey population due to inhibition by the 
predator population, 
𝛼2: rate of decrease of the predator population due to inter species 
competition, 
𝛽2: Rate of increase of the predator population due to successful 
attacks on the prey population, 
𝛿1: Rate of decrease of the predator population due to the 
competition with the third    species (competitor),  
𝛼3: rate of decrease of the competitor population to the predator 
population due to inter species competition, 
𝛽3: Rate of decrease of the competitor population due to the 
competition with the third species (predator population).  Where all 
the parameter values 𝛼1 , 𝛼2, 𝛼3, 𝛽1 , 𝛽2 , 𝛽3 and 𝛿1 are non-negative 
real numbers.  

It is assumed that the prey reproduction is influenced by the predator 
only while the predator reproduction is limited by the amount of prey 
caught. It is also assumed that the prey population grows 
exponentially with the rate r  in absence of predator and also 
predator population growth exponentially in the absence of prey by 
alternative food with a rate 𝑠. But the competitor to the predator 
can’t change in the absence of the prey population. Where 𝑞1, 𝑞2, 
𝑞3are the catch ability coefficients of three species and strictly 
positive. The catch-rate function: 𝑞1Ε1𝑁1, 𝑞2Ε2𝑁2 , 𝑞3Ε3𝑁3

 
are based 

on CPUE (catch-per unit-effort). 

2.2. Imprecise Prey – Predator Model  

By the construction of the prey–predator model the parameters such 
as prey population growth rate r, predator population growth rate s, 
competitor to the predator growth rate ℓ

 
and predation coefficients 

𝛼1 , 𝛼2, 𝛼3, 𝛽1 , 𝛽2 , 𝛽3 and 𝛿1 are positive in nature and are considered 
precise. Intuitively if any of the parameters are imprecise, 
furthermore when any parameter of the right hand side of equations 
(3.1) - (3.3) are interval number rather than a single value, then it is 
not so straight forward to convert equations to the standard form like 
(3.1), (3.2) and (3.3).  For an imprecise coefficient we present the 
problem with an interval coefficient. 

2.2.1 Prey – Predator Model with Interval Coefficient 

Let 𝑟 , 𝑠 , ℓ , 𝛼 1, 𝛼 2, 𝛼 3, 𝛽 1, 𝛽 2, 𝛽 3 and 𝛿 1be the interval counterparts 
of, 𝑟, 𝑠, ℓ, 𝛼1 , 𝛼2 , 𝛼3, 𝛽1 , 𝛽2 , 𝛽3   and 𝛿1 

respectively, then the prey–
predator model with combined harvesting efforts E1, E2 and E3 can be 
written in the following form: 

 
𝑑𝑁1

𝑑𝑡
=  𝑟 𝑁1 − 𝛼 1 𝑁1 

2 − 𝛽 1𝑁1𝑁2 − 𝑞1Ε1𝑁1                                (3.4)                                                                       

 
𝑑𝑁2

𝑑𝑡
=  𝑠 𝑁2 − 𝛼 2 𝑁2 

2 + 𝛽 2𝑁1𝑁2 − 𝛿 1𝑁2𝑁3 − 𝑞2Ε2𝑁2           (3.5) 
                                                      

  
𝑑𝑁3

𝑑𝑡
=  ℓ 𝑁3 − 𝛼 3 𝑁3 

2 − 𝛽 3𝑁2𝑁3 − 𝑞3Ε3𝑁3                              (3.6)
                                                                       

Where 
 

 𝑟 ∈  𝑟𝑙 , 𝑟𝑢  , 𝑠 ∈  𝑠𝑙 , 𝑠𝑢  , ℓ ∈  ℓ𝑙 , ℓ𝑢  , 𝛼 1 ∈   𝛼1 𝑙 ,  𝛼1 𝑢  , 𝛼 2 ∈
  𝛼2 𝑙 ,  𝛼2 𝑢  , 8 

𝛼 3 ∈   𝛼3 𝑙 ,  𝛼3 𝑢  , 𝛽 1 ∈   𝛽1 𝑙 ,  𝛽1 𝑢  , 𝛽 2 ∈   𝛽2 𝑙 ,  𝛽2 𝑢  , 𝛽 3 ∈
  𝛽3 𝑙  ,  𝛽3 𝑢   and 

 𝛿 1 ∈   𝛿1 𝑙 ,  𝛿1 𝑢  With 
𝑟𝑙 , 𝑠𝑙 , ℓ𝑙 ,  𝛼1 𝑙 ,  𝛼2 𝑙 ,  𝛼3 𝑙 ,  𝛽1 𝑙 ,  𝛽2 𝑙 ,  𝛽3 𝑙 , and  𝛿1 𝑙  are all 
positive.  

2.2.2 Prey–Predator Model with Parametric Interval 

Valued Function Coefficient 

The parametric form of the equations (3.4), (3.5) and (3.6) are: 

𝑑𝑁1(𝑡;𝑝)

𝑑𝑡
=

 𝑟𝑙 
1−𝑝 𝑟𝑢 

𝑝𝑁1 −  (𝛼1)𝑢 
1−𝑝 (𝛼1)𝑙 

𝑝𝑁1
2 −

 (𝛽1)𝑢 
1−𝑝 (𝛽1)𝑙 

𝑝𝑁1𝑁2 − 𝑞1Ε1𝑁1                                            (3.7) 

𝑑𝑁2(𝑡;𝑝)

𝑑𝑡
=

 𝑠𝑙 
1−𝑝 𝑠𝑢 

𝑝𝑁2 −   𝛼2 𝑢 
1−𝑝  𝛼2 𝑙 

𝑝𝑁2
2 +

  𝛽2 𝑙 
1−𝑝  𝛽2 𝑢 

𝑝𝑁1𝑁2 −   𝛿1 𝑢 
1−𝑝  𝛿1 𝑙 

𝑝𝑁2𝑁3 −
𝑞2Ε2Ν2                                                                                                (3. 8)                                                                        

𝑑𝑁3(𝑡;𝑝)

𝑑𝑡
=  ℓ𝑙 

1−𝑝 ℓ𝑢 
𝑝𝑁3 −  (𝛼3)𝑢 

1−𝑝 (𝛼3)𝑙 
𝑝𝑁3

2 −

 (𝛽3)𝑢 
1−𝑝 (𝛽3)𝑙 

𝑝𝑁2𝑁3 − 𝑞3Ε3𝑁3                                            (3.9) 

 Theorem 1: The differential equations with interval valued 
coefficient       

𝑑𝑁1

𝑑𝑡
=  𝑟 0𝑁1 − 𝛼 0 𝑁1 

2 − 𝛽 0𝑁1𝑁2 − 𝑞1Ε1𝑁1                           (10)                                                                          

 
𝑑𝑁2

𝑑𝑡
=  𝑠 0𝑁2 − 𝜏 0 𝑁2 

2 + 𝛾 0𝑁1𝑁2 − 𝛿 0𝑁2𝑁3 − 𝑞2Ε2𝑁2      (11)
                                                         

 
𝑑𝑁3

𝑑𝑡
=  ℓ 0𝑁3 − 𝜌 0 𝑁3 

2 − 𝜓 0𝑁2𝑁3 − 𝑞3Ε3𝑁3                        (12)                                                                                   

Where 𝑟 0 ∈  𝑟𝑙 , 𝑟𝑢  , 𝑠 0 ∈  𝑠𝑙 , 𝑠𝑢  , ℓ 0 ∈  ℓ𝑙 , ℓ𝑢  , 𝛼 0 ∈  𝛼𝑙 , 𝛼𝑢  , 𝛽 0 ∈
 𝛽𝑙 , 𝛽𝑢  ,  

𝜏 0 ∈  𝜏𝑙 , 𝜏𝑢  , 𝛾 0 ∈  𝛾𝑙 , 𝛾𝑢  , 𝛿 0 ∈  𝛿𝑙 , 𝛿𝑢  , 𝜌 0 ∈  𝜌𝑙  , 𝜌𝑢   and  

𝜓 0 ∈  𝜓𝑙 , 𝜓𝑢   

Also 𝑟𝑙 , ℓ𝑙 , 𝑠𝑙 , 𝛼𝑙 , 𝛽𝑙 , 𝜏𝑙 , 𝛾𝑙 , 𝜌𝑙 , 𝛿𝑙  and 𝜓𝑙  (are all > 0) are provided 
interval valued functional form of coefficient by the differential 
equations: 

𝑑𝑁1(𝑡;𝑝)

𝑑𝑡
=

 𝑟𝑙 
1−𝑝 𝑟𝑢 

𝑝𝑁1 −  𝛼𝑢 
1−𝑝 𝛼𝑙 

𝑝𝑁1
2 −  𝛽𝑢 

1−𝑝 𝛽𝑙 
𝑝𝑁1𝑁2 −

𝑞1Ε1𝑁1                                                                            (13)                                

𝑑𝑁2(𝑡;𝑝)

𝑑𝑡
=  𝑠𝑙 

1−𝑝 𝑠𝑢 
𝑝𝑁2 −  𝜏𝑢 

1−𝑝 𝜏𝑙 
𝑝𝑁2

2 +  𝛾𝑙 
1−𝑝 𝛾𝑢 

𝑝𝑁1𝑁2   

  − 𝛿𝑢 
1−𝑝 𝛿𝑙 

𝑝𝑁2𝑁3 − 𝑞2Ε2Ν2                                                (14)                                                                     

𝑑𝑁3(𝑡;𝑝)

𝑑𝑡
=

 ℓ𝑙 
1−𝑝 ℓ𝑢 

𝑝𝑁3 −  𝜌𝑢 
1−𝑝 𝜌𝑙 

𝑝𝑁3
2 −  𝜓𝑢 

1−𝑝 𝜓𝑙 
𝑝𝑁2𝑁3 −

𝑞3Ε3𝑁3                                                     (15)                                                                                                                                                      
                       

                                                             

for ]1,0[p . 
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Proof:   Replacing in place of 𝑟 0, 𝑠 0, ℓ 0, 𝛼 0, 𝛽 0 , 𝜏 0 , 𝛾 0, 𝛿 0 , 𝜌 0 and  

𝜓 0 by  𝑟𝑙 , 𝑟𝑢  ,  𝑠𝑙 , 𝑠𝑢  ,  ℓ𝑙 , ℓ𝑢  ,  𝛼𝑙 , 𝛼𝑢  ,  𝛽𝑙 , 𝛽𝑢  ,  𝜏𝑙 , 𝜏𝑢  ,  𝛾𝑙 , 𝛾𝑢  ,
 𝛿𝑙 , 𝛿𝑢  ,  𝜌𝑙  , 𝜌𝑢   and   𝜓𝑙 , 𝜓𝑢   respectively, then equation (3.10), 
(3.11) and (3.12) will be come: 

𝑑𝑁1

𝑑𝑡
=  𝑟𝑙 , 𝑟𝑢  𝑁1 −  𝛼𝑙 , 𝛼𝑢   𝑁1 

2 −  𝛽𝑙 , 𝛽𝑢  𝑁1𝑁2 − 𝑞1Ε1𝑁1    (16)                                                      

𝑑𝑁2

𝑑𝑡
=  𝑠𝑙 , 𝑠𝑢  𝑁2 −  𝜏𝑙 , 𝜏𝑢   𝑁2 

2 +  𝛾𝑙 , 𝛾𝑢  𝑁1𝑁2 −  𝛿𝑙 , 𝛿𝑢  𝑁2𝑁3 −

𝑞2Ε2𝑁2                                                                                                 (17)                           

𝑑𝑁3

𝑑𝑡
=  ℓ𝑙 , ℓ𝑢  𝑁3 −  𝜌𝑙 , 𝜌𝑢   𝑁3 

2 −  𝜓𝑙 , 𝜓𝑢  𝑁2𝑁3 − 𝑞3Ε3𝑁3   (18)                                                  

 Let 𝑟1
′ ∈  𝑟𝑙 , 𝑟𝑢  , 𝑠1

′ ∈  𝑠𝑙 , 𝑠 , ℓ1
′ ∈  ℓ𝑙 , ℓ𝑢  , 𝛼1

′ ∈  𝛼𝑙 , 𝛼𝑢  , 𝜏1
′ ∈  𝜏𝑙 , 𝜏𝑢  , 

𝜌1
′ ∈  𝜌𝑙 , 𝜌𝑢  , 𝛽1

′ ∈  𝛽𝑙 , 𝛽𝑢  , 𝛾1
′ ∈  𝛾𝑙 , 𝛾𝑢  , 𝛿1

′ ∈  𝛿𝑙 , 𝛿𝑢   and 𝜓1
′ ∈

 𝜓𝑙 , 𝜓𝑢   respectively. Following the interval arithmetic operation and 
properties, equations (3.16), (3.17) and (3.18) reduces to: 

𝑑Ν1

𝑑𝑡
= 𝑟1

′Ν1 − 𝛼1
′ Ν1

2 − 𝛽1
′Ν1Ν2 − 𝑞1Ε1Ν1                                   (19)                                                                              

𝑑Ν2

𝑑𝑡
= 𝑠1

′Ν2 − 𝜏1
′ Ν2

2 + 𝛾1
′Ν1Ν2 − 𝛿1

′Ν2Ν3 − 𝑞2Ε2Ν2               (20)                                                            

𝑑Ν3

𝑑𝑡
= ℓ1

′ Ν3 − 𝜌1
′ Ν3

2 − 𝜓1
′ Ν2Ν3 − 𝑞3Ε3Ν3                                 (21)                                                                               

                         
For fixed 𝑛, let us consider the interval-valued function 𝑕𝑛

(𝑝) =

𝑎𝑛
(1−𝑝)𝑏𝑛

(𝑝)

 
for  1,0p  and interval 𝛼𝑛 ∈  𝑎𝑛 , 𝑏𝑛  .  Since 𝑕𝑛

(𝑝) is 

a strictly increasing and continuous functions, then the above 
equation reduces to: 
𝑑Ν1

𝑑𝑡
= 𝑟1

′′Ν1 − 𝛼1
′′  Ν1 

2 − 𝛽1
′′ Ν1Ν2 − 𝑞1Ε1Ν1                          (22)                                                                                   

𝑑Ν2

𝑑𝑡
= 𝑠1

′′Ν2 − 𝜏1
′′  Ν2 

2 + 𝛾1
′′ Ν1Ν2 − 𝛿1

′′ Ν2Ν3 − 𝑞2Ε2Ν2    (23)
                                                                

 
𝑑Ν3

𝑑𝑡
= ℓ1

′′ Ν3 − 𝜌1
′′  Ν3 

2 − 𝜓1
′′Ν2Ν3 − 𝑞3Ε3Ν3                         (24)

                                                                                   
Where 

𝑟1
′′ ∈  𝑟𝑙 

1−𝑝 𝑟𝑢 
𝑝 , 𝑠1

′′ ∈  𝑠𝑙 
1−𝑝   𝑠𝑢 

𝑝 , ℓ1
′′ ∈  ℓ𝑙 

1−𝑝   ℓ𝑢 
𝑝 , 

𝛼1
′′ ∈  𝛼𝑢 

1−𝑝   𝛼𝑙 
𝑝 , 𝜏1

′′ ∈  𝜏𝑢 
1−𝑝   𝜏𝑙 

𝑝 , 𝜌1
′′ ∈  𝜌𝑢 

1−𝑝   𝜌𝑙 
𝑝 , 

𝛽1
′′ ∈  𝛽𝑢 

1−𝑝   𝛽𝑙 
𝑝 , 𝛾1

′′ ∈  𝛾𝑙 
1−𝑝   𝛾𝑢 

𝑝 , 𝛿1
′′ ∈  𝛿𝑢 

1−𝑝   𝛿𝑙 
𝑝 , 

𝜓1
′′ ∈  𝜓𝑢 

1−𝑝   𝜓𝑙 
𝑝  and 𝑝 ∈ [0, 1].  

Therefore the parametric form of the differential equations (10) - (12) 
is given by: 

 

𝑑Ν1

𝑑𝑡
=  𝑟𝑙 

1−𝑝 𝑟𝑢 
𝑝Ν1 −  𝛼𝑢 

1−𝑝   𝛼𝑙 
𝑝Ν1

2 −  𝛽𝑢 
1−𝑝   𝛽𝑙 

𝑝Ν1Ν2 −

𝑞1Ε1Ν1                                                                                                                                   

 

𝑑Ν2

𝑑𝑡
=  𝑠𝑙 

1−𝑝   𝑠𝑢 
𝑝Ν2 −  𝜏𝑢 

1−𝑝   𝜏𝑙 
𝑝Ν2

2 +  𝛾𝑙 
1−𝑝   𝛾𝑢 

𝑝Ν1Ν2 −

 𝛿𝑢 
1−𝑝   𝛿𝑙 

𝑝Ν2Ν3 − 𝑞2Ε2Ν2                                                                                                                               

 
𝑑Ν3

𝑑𝑡
=

 ℓ𝑙 
1−𝑝   ℓ𝑢 

𝑝Ν3 −  𝜌𝑢 
1−𝑝   𝜌𝑙 

𝑝Ν3
2 −  𝜓𝑢 

1−𝑝   𝜓𝑙 
𝑝Ν2Ν3 −

𝑞3Ε3Ν3 for ]1,0[p .   

2.3  Dynamic Behavior of the Harvesting Model 

2.3.1 Equilibrium States of Prey-Predator Model with 
Parametric Interval Coefficient 

The system under investigation has eight equilibrium states given b 
𝑑𝑁𝑖 𝑡,𝑝 

𝑑𝑡
= 0, 𝑖 = 1,2,3                                                                   (25)                                                                                        

The possible equilibrium points of the systems are: 
 

I. The extinct state 

 Ν 1 = 0, Ν 2 = 0 and Ν 3 = 0                                                     (26)                                                

II. The state in which both the predator and competitor to the 

predator washed out and prey survive 

That is: 

Ν 2 = Ν 3 = 0 and Ν 1 =  
𝑎−𝑞1Ε1

𝑏
, where 𝑎 =  𝑟𝑙 

1−𝑝 𝑟𝑢 
𝑝  and 

𝑏 =   (𝛼1)𝑢 
1−𝑝    

a−q1Ε1

b
, 0,0                                                        (27)                                                                        

III.  The state in which only the predator survives and the prey 

and competitor to the predator are washed out 

That is: 

Ν 1 = Ν 3 = 0 and Ν 2 =  
𝑑−𝑞2Ε2

𝑒
  where 𝑑 =  𝑠𝑙 

1−𝑝 𝑠𝑢 
𝑝  and 

𝑒 =   𝛼2 𝑢 
1−𝑝  𝛼2 𝑙 

𝑝  

  0,
𝑑−𝑞2Ε2

𝑒
, 0                                                                               (28) 

IV.  The state in which both the prey and the predators washed 

out and competitor to the predator survive 

That is: 

Ν 1 = Ν 2 = 0 and Ν 3 =  
𝑕−𝑞3Ε3

𝑘
  where 𝑕 =  ℓ𝑙 

1−𝑝 ℓ𝑢 
𝑝  and 

𝑘 =   𝛼3 𝑢 
1−𝑝  𝛼3 𝑙 

𝑝  0, 0,
𝑕−𝑞3Ε3

𝑘
                                          (29)                                

V. The state in which both the prey and the predators stay alive 

and competitor to the predator vanishes: 

That is: 
Ν 3 = 0  

 𝑟𝑙 
1−𝑝 𝑟𝑢 

𝑝Ν 1 −  (𝛼1)𝑢 
1−𝑝 (𝛼1)𝑙 

𝑝Ν 1
2
−

 (𝛽1)𝑢 
1−𝑝 (𝛽1)𝑙 

𝑝Ν 1Ν 2 − 𝑞1Ε1Ν 1 = 0  and          

 𝑠𝑙 
1−𝑝 𝑠𝑢 

𝑝Ν 2 −   𝛼2 𝑢 
1−𝑝  𝛼2 𝑙 

𝑝Ν 2
2

 
+ (𝛽2)𝑙 

1−𝑝 (𝛽1)𝑢 
𝑝Ν 1Ν 2 − 𝑞2Ε2Ν 2 = 0                (30)    

Solving for Ν 1 and Ν 2 from the 2
nd

 and 3
rd

 equations that given in 
equation (3.30) yields: 

Ν 1 =
𝑒 𝑎−𝑞1Ε1 +𝑐 𝑑+𝑞2Ε2 

𝑏𝑒+𝑐𝑓
  and  Ν 2 =

𝑓 𝑎−𝑞1Ε1 −𝑏 𝑑+𝑞2Ε2 

𝑏𝑒+𝑐𝑓
 

where 𝑎 =  𝑟𝑙 
1−𝑝 𝑟𝑢 

𝑝 ,𝑏 =   𝛼1 𝑢 
1−𝑝  𝛼1 𝑙 

𝑝 , 
𝑐 =   𝛽1 𝑢 

1−𝑝  𝛽1 𝑙 
𝑝 ,  𝑑 =  𝑠𝑙 

1−𝑝 𝑠𝑢 
𝑝 ,  

𝑒 =   𝛼2 𝑢 
1−𝑝  𝛼2 𝑙 

𝑝  and 𝑓 =   𝛽2 𝑢 
1−𝑝  𝛽2 𝑙 

𝑝   
Also assuming that 𝑎 − 𝑞1Ε1 > 0, then these equilibrium states’ exist 
only when: 

    
2211

qq dbaf  

 
VI.  The state in which both prey and competitor to the predator 

exist and predator extinct 

That is Ν2
    = 0, Ν1

    =
𝑎−𝑞1Ε1

𝑏
 and Ν 3 =

𝑕−𝑞3Ε3

𝑘
                              (31)                                        

where 𝑎 =  𝑟𝑙 
1−𝑝 𝑟𝑢 

𝑝 , 𝑏 =   𝛼1 𝑢 
1−𝑝  𝛼1 𝑙 

𝑝 ,  
 𝑕 =  ℓ𝑙 

1−𝑝 ℓ𝑢 
𝑝  and  𝑘 =   𝛼3 𝑢 

1−𝑝  𝛼3 𝑙 
𝑝   

The equilibrium state exists when: 𝑎 − 𝑞1Ε1 > 0 and 𝑕 − 𝑞3Ε3 > 0 
 
VII. The state in which both Predator and Competitor to the 

Predator exist and Prey washed out 

That is:  
𝑁1
   = 0, 
 𝑠𝑙 

1−𝑝 𝑠𝑢 
𝑝Ν2
    −  (𝛼2)𝑢 

1−𝑝 (𝛼2)𝑙 
𝑝 Ν2

     2 −
 (𝛿1)𝑢 

1−𝑝 (𝛿1)𝑙 
𝑝Ν2
    Ν3

    − 𝑞2Ε2Ν2
    = 0 and 

 ℓ𝑙 
1−𝑝 ℓ𝑢 

𝑝Ν3
    −  (𝛼3)𝑢 

1−𝑝 (𝛼3)𝑙 
𝑝 Ν3

     2 −
 (𝛽3)𝑢 

1−𝑝 (𝛽3)𝑙 
𝑝Ν2
    Ν3

    − 𝑞3Ε3Ν3
    = 0                                         (32) 

Solving for 𝑁 2 and 𝑁 3from the 2
nd

 and 3
rd

 equations that given in 
equation (32) yields: 

Ν 2 =
𝑘 𝑑−𝑞2Ε2 −𝑔 𝑕−𝑞3Ε3 

𝑒𝑘−𝑚𝑔
 𝑎𝑛𝑑  Ν 2 =

𝑒 𝑕−𝑞2Ε2 −𝑚 𝑑−𝑞3Ε3 

𝑒𝑘−𝑚𝑔
  

where 𝑑 =  𝑠𝑙 
1−𝑝 𝑠𝑢 

𝑝 ,𝑒 =   𝛼2 𝑢 
1−𝑝  𝛼2 𝑙 

𝑝 , 
𝑔 =   𝛿1 𝑢 

1−𝑝  𝛿1 𝑙 
𝑝 , 𝑕 =  ℓ𝑙 

1−𝑝 ℓ𝑢 
𝑝 ,  

𝑘 =   𝛼3 𝑢 
1−𝑝  𝛼3 𝑙 

𝑝  and 𝑚 =   𝛽3 𝑢 
1−𝑝  𝛽3 𝑙 

𝑝    
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Assuming that 𝑑 − 𝑞2Ε2 > 0, 𝑕 − 𝑞3Ε3 > 0, 𝑕 − 𝑞2Ε2 and 
𝑑 − 𝑞3Ε3 > 0,

 
then these equilibrium states’ exist only when:  

𝑘 𝑑 − 𝑞2Ε2 > 𝑔 𝑕 − 𝑞3Ε3 , 𝑒 𝑕 − 𝑞2Ε2 > 𝑚 𝑑 − 𝑞3Ε3  𝑎𝑛𝑑 𝑒𝑘 >
𝑚𝑔  

VIII. Co-existence State 
 
      

  cfkgmekb

hcgdkcgmeka EqEqEq
N 




332211

1

 
     

  cfkgmekb

hgbdbkafk EqEqEq
N 




332211

2

 
and 

      
  cfkgmekb

dbmafmcfbeh EqEqEq
N 




221133

3

 
where 𝑎 =  𝑟𝑙 

1−𝑝 𝑟𝑢 
𝑝  ,𝑏 =   𝛼1 𝑢 

1−𝑝  𝛼1 𝑙 
𝑝 ,  

𝑐 =   𝛽1 𝑙 
1−𝑝  𝛽1 𝑢 

𝑝 , 

𝑔 =   𝛿1 𝑢 
1−𝑝  𝛿1 𝑙 

𝑝 , 𝑑 =  𝑠𝑙 
1−𝑝 𝑠𝑢 

𝑝 , 

𝑒 =   𝛼2 𝑢 
1−𝑝  𝛼2 𝑙 

𝑝 , 𝑓 =   𝛽2 𝑙 
1−𝑝  𝛽2 𝑢 

𝑝 , 

 𝑕 =  ℓ𝑙 
1−𝑝 ℓ𝑢 

𝑝 ,𝑘 =   𝛼3 𝑢 
1−𝑝  𝛼3 𝑙 

𝑝  

and 𝑚 =   𝛽3 𝑙 
1−𝑝  𝛽3 𝑢 

𝑝  

Assuming that 𝑑 − 𝑞2Ε2 > 0, 𝑕 − 𝑞3Ε3 > 0 and 𝑎 − 𝑞1Ε1 > 0,
 
then 

these equilibrium states’ exists only when: 

      EqqEq dkcgmekahcg
221133

   
and

     
332211

qEqEq hgbdbkafk
 

2.3.2 Stability Analysis  

To  investigate  the  stability  of  the  equilibrium  states  we  consider  
small  perturbations u1, u2 and u3 in N1, N2 and N3 over Ν 1 , Ν 2and 
Ν 3  respectively, so that  

Ν1 = Ν 1 + 𝑢1, Ν2 = Ν 2 + 𝑢2 , Ν3 = Ν 3 + 𝑢3                                (33)                                                                                  

 By  substituting  (3.33)  in to equations  (3.1) - (3.3) and  neglecting  
second  and  higher  order terms of  the Perturbations 𝑢1 , 𝑢2and 
𝑢3we get the equations of the perturbed sta 

 
𝑑𝕌

𝑑𝑡
= 𝔸𝕌                                                                                                (34)                                                                                                 

Where 𝕌 =  𝑢1 , 𝑢2 , 𝑢3  and  

𝔸 =

 

𝑎 − 2𝑏Ν 1 − 𝑐Ν 2 − 𝑞1Ε1 −𝑐Ν 1 0

𝑓Ν 2 𝑑 − 2𝑒Ν 2 + 𝑓Ν 1 − 𝑔Ν 3 − 𝑞2Ε2 −𝑔Ν 2

0 −𝑚Ν 3 𝑕 − 2𝑘Ν 3 − 𝑚Ν 2 − 𝑞3Ε3

   

                                                                           (35) 

The characteristic equation for the system is:  𝑑 𝔸 − 𝜆Ι = 0   (36)                                                                          

The equilibrium state is stable, if three roots of the equation (3.36) 
have negative real parts.Solving for 𝑎, d and h from the equation (1) - 
(3) respectively and substituting in to the equation (3.35) we obtain 
the variational matrix:  

 𝔸 =  

−𝑏Ν 1 −𝑐Ν 1 0

𝑓Ν 2 −𝑒Ν 2 −𝑔Ν 2

0 −𝑚Ν 3 −𝑘Ν 3

                                                          (37)  

Where 𝑎 = 𝑏Ν 1 + 𝑐Ν 2 + 𝑞1Ε1 , 𝑑 = 𝑒Ν 2 − 𝑓Ν 1 + 𝑔Ν 3 +

𝑞2Ε2  𝑎𝑛𝑑 𝑕 = 𝑘Ν 3 + 𝑚Ν 2 + 𝑞3Ε3 

2.3.2.1 Local Stability Analysis 

The local and global stability of the equilibrium states I, II, III and IV 
are found to be unstable. But the reaming is stable. We restricted our 
study to the equilibrium states V, VI, VII and VIII. 
i. Stability of the Equilibrium State  𝚴 𝟏, 𝚴 𝟐, 𝟎  

The variational matrix at the trivial equilibrium point will become: 

𝔸 =  

𝑎 − 2𝑏Ν 1 − 𝑐Ν 2 − 𝑞1Ε1 −𝑐Ν 1 0

𝑓Ν 2 𝑑 − 2𝑒Ν 2 + 𝑓Ν 1 − 𝑞2Ε2 −𝑔Ν 2

0 0 𝑕 − 𝑚Ν 2 − 𝑞3Ε3

     

                                                                                                                (38)
 
 

The Characteristic equation of the above variational matrix is given 
by: 𝑑 𝔸 − 𝜆Ι = 0 

One of the Eigen values of variational matrix  is 𝜆 =  𝑕 − 𝑞3Ε3 −

𝑚Ν 2 and the other two are obtained from the quadratic equati 

 𝜆2 +  𝑏Ν 1 + 𝑒Ν 2 𝜆 +  𝑏𝑒 + 𝑐𝑓 Ν 1Ν 2 = 0                                  (39) 

In (3.39), the sum of the roots, − 𝑏Ν 1 + 𝑒Ν 2  , is negative and the 

product of the roots,  𝑏𝑒 + 𝑐𝑓 Ν 1Ν 2, is positive. Therefore the roots 
of (3.39) are real and negative or complex conjugates having negative 
real parts. Thus the equilibrium point is asymptotically stable when  

 𝑕 − 𝑞3Ε3 < 𝑚Ν 2. 

 
ii. Stability of the Equilibrium State at  𝚴 𝟏, 𝟎, 𝚴 𝟑 : 

The variational matrix at the trivial equilibrium point (state) is:
 

 
𝔸 =

 

𝑎 − 2𝑏Ν 1 − 𝑞1Ε1 −𝑐Ν 1 0

0 𝑑 + 𝑓Ν 1 − 𝑔Ν 3 − 𝑞2Ε2 0

0 −𝑚Ν 3 𝑕 − 2𝑘Ν 3 − 𝑞3Ε3

     

                                                                                                               (40) 

The roots of the corresponding characteristic equations are: 

𝜆1 = − 𝑎 − 𝑞1Ε1 , 𝜆2 = 𝑑 +
𝑓

𝑏
 𝑎 − 𝑞1Ε1 −

𝑔

𝑘
 𝑕 − 𝑞3Ε3  𝑎𝑛𝑑 𝜆3 =

− 𝑕 − 𝑞3Ε3   

The equilibrium point is asymptotically stable when 𝑑 +
𝑓

𝑏
 𝑎 − 𝑞1Ε1 <

𝑔

𝑘
 𝑕 − 𝑞3Ε3 .  

 
iii. Stability of the equilibrium state at  𝟎, 𝚴 𝟐, 𝚴 𝟑  

The variational matrix at the trivial equilibrium point (state) is:  

𝔸 =  

𝑎 − 𝑐Ν 2 − 𝑞1Ε1 0 0

𝑓Ν 2 𝑑 − 2𝑒Ν 2 − 𝑔Ν 3 − 𝑞2Ε2 −𝑔Ν 2

0 −𝑚Ν 3 𝑕 − 2𝑘Ν 3 − 𝑚Ν 2 − 𝑞3Ε3

   

One of the Eigen values of variational matrix 𝔸 is 𝜆1 =  𝑎 − 𝑞1𝐸1 −
𝑐𝑁 2 and the other two are obtained from the quadratic equation: 

 𝜆2 +  𝑒𝑁 2 + 𝑘𝑁 3 𝜆 +  𝑒𝑘 − 𝑔𝑚 𝑁 2𝑁 3 = 0                                    (41)                                                                  
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In (41), the sum of the roots − 𝑒𝑁 2 + 𝑘𝑁 3  is negative and the 

product of the roots. 𝑒𝑘 − 𝑔𝑚 𝑁 2𝑁 3 is positive. Therefore the roots 
of (41) are real and negative or complex conjugates having negative 
real parts. Thus the state will be asymptotically stable when 
 𝑎 − 𝑞1𝐸1 < 𝑐𝑁 2. 

iv. Stability of the positive interior equilibrium point  

The variational matrix at the positive interior equilibrium point is: 

𝔸 =  

−𝑏Ν 1 −𝑐Ν 1 0

𝑓Ν 2 −𝑒Ν 2 −𝑔Ν 2

0 −𝑚Ν 3 −𝑘Ν 3

   

In this case the characteristic equation is given by  

 𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3 = 0                                                                (42)                                    

Where  

𝑎1 = 𝑏𝑁 1 + 𝑒𝑁 2 + 𝑘𝑁 3,  𝑎2 = 𝑏𝑘𝑁 1𝑁 3 +  𝑒𝑘 − 𝑔𝑚 𝑁 2𝑁 3 +
 𝑏𝑒 + 𝑐𝑓 𝑁 1𝑁 2 and 𝑎3 =  𝑏𝑒𝑘 + 𝑐𝑓𝑘 − 𝑏𝑔𝑚 𝑁 1𝑁 2𝑁 3    

By Routh-Hurwitz criteria, all Eigen values have negative real parts if 
and only if  

𝐷1 = 𝑎1 > 0, 𝐷2 = 𝑎1𝑎2 − 𝑎3 > 0 and 𝐷3 = 𝑎3 𝑎1𝑎2 − 𝑎3 > 0     

But 𝐷1 = 𝑎1 > 0, 𝐷2 = 𝑎1𝑎2 − 𝑎3 > 0 and 𝐷3 = 𝑎3 𝑎1𝑎2 − 𝑎3 > 0 

if gmek   

The positive interior equilibrium point  Ν 1 , Ν 2, Ν 3  is locally stable if 

.gmek   

 
2.3.2.2  Global Stability 

Theorem 2: The equilibrium point  Ν 1 , Ν 2, Ν 3  is globally 
asymptotically stable.  

Proof: 

Let consider the function which defined as: 

𝑉 Ν 1 , Ν 2 , Ν 3 =  Ν1 − Ν 1 − Ν 1 ln  
Ν1

Ν 1
  +  Ν2 − Ν 2 − Ν 2 ln  

Ν2

Ν 2
  +

 Ν3 − Ν 3 − Ν 3 ln  
Ν3

Ν 3
    for Ν1 > Ν 1, Ν2 > Ν 2 and Ν3 > Ν 3.                                        

Now we prove that the function V is a Liapunov function. For this we 

need to show that: 

 V is continues and positive definite function  

 
𝑑𝑉

𝑑𝑡
  is negative semi definite 

Now  

i. The function V  is positive definite, since 𝑁1 > Ν 1, 𝑁2 > Ν 2 and 

𝑁3 > Ν 3.  

ii. Now, differentiating V with respect to ''t  we obtain:  

𝑑𝑉

𝑑𝑡
=  1 −

Ν 1

Ν1
 

𝑑Ν1

𝑑𝑡
+  1 −

Ν 2

Ν2
 

𝑑Ν2

𝑑𝑡
+  1 −

Ν 3

Ν3
 

𝑑Ν3

𝑑𝑡
  

 =  
Ν1−Ν 1

Ν1
 

𝑑Ν1

𝑑𝑡
+  

Ν2−Ν 2

Ν2
 

𝑑Ν2

𝑑𝑡
+  

Ν3−Ν 3

Ν3
 

𝑑Ν3

𝑑𝑡
                                  (43)                                                                  

Substituting (1), (2) and (3) in to (43) we obtain: 

𝑑𝑉

𝑑𝑡
=  𝑁1 − 𝑁 1  𝑎 − 𝑏𝑁1 − 𝑐𝑁1 − 𝑞1𝑁1 +  𝑁2 − 𝑁 2  𝑑 − 𝑒𝑁2 +

𝑓𝑁1 − 𝑔𝑁3 − 𝑞2𝑁2 +    𝑁3 − 𝑁 3  𝑕 − 𝑘𝑁3 − 𝑚𝑁2 − 𝑞3𝑁3     

  =  −𝑏 𝑁1 − 𝑁 1 
2 −  𝑒 +

1

2
 𝑐 − 𝑓 + 𝑔 + 𝑚   𝑁2 − 𝑁 2 

2 −

 𝑘 +
1

2
 𝑚 + 𝑔   𝑁3 − 𝑁 3 

2 < 0   

This implies that 
𝑑𝑉

𝑑𝑡
 negative semi definite. Therefore,  𝑁 1 , 𝑁 2, 𝑁 3  is 

globally asymptotically stable. 

Theorem 3: The systems (1) – (3) cannot have any limit cycle in the 
interior of the positive quadrant. 

Proof: Let Η Ν1 , Ν2, Ν3 =
1

Ν1Ν2Ν3
 

 𝑕1 Ν1 , Ν2 , Ν3 = 𝑎Ν1 − 𝑏 Ν1 
2 − 𝑐Ν1Ν2 − q1E1Ν1 

 𝑕2 Ν1 , Ν2, Ν3 = 𝑑Ν2 − 𝑒 Ν2 
2 + 𝑓Ν1Ν2 − 𝑔Ν2Ν3 − q2E2Ν2 and               

 𝑕3 Ν1 , Ν2, Ν3 = 𝑕Ν3 − 𝑘 Ν3 
2 − 𝑚Ν2Ν3 − q3E3Ν3. Then            

Η Ν1, Ν2 , Ν3 > 0 in the interior of positive octant of xyz -space.  

Because Ν1 , Ν2 and Ν3 are all greater than zero.  

Now △  Ν1, Ν2 , Ν3 =  
𝜕

𝜕Ν1

 Η𝑕1 +
𝜕

𝜕Ν2

 Η𝑕2 +
𝜕

𝜕Ν3

 Η𝑕3  

  =  
−𝑏

Ν2Ν3
−

𝑒

Ν1Ν3
−

𝑘

Ν1Ν2
 

 =  −  
𝑏

Ν2Ν3
+

𝑒

Ν1Ν3
+

𝑘

Ν1Ν2
 < 0

                                       

                                              

This shows that △  Ν1 , Ν2, Ν3  does not change sign and identically 
zero in the positive octant of xyz  space. By Bendixson - Dulac 

criteria, it follows that the system (1) – (3) has no closed trajectories 
and hence no periodic solutions in the positive octant of xyz  space. 

Thus the system (1) - (3) cannot have any limit cycles in the interior of 
the positive octant.  

2.4  Bionomic equilibrium of the imprecise prey–
predator model 

The bionomic equilibrium is nothing but the combination of the 
concepts of biological equilibrium as well as economic equilibrium. 
The biological equilibrium is given by equation (3.25). It is the study 
of the dynamics of living resources using economic models. Economic 
equilibrium is said to be achieved when the total revenue obtained 
by selling the harvested biomass (TR) equals to the total cost for the 
effort devoted to the harvesting (TC).To discuss the bionomic 
equilibrium of the imprecise prey, predator and competitor to the 
predator model, we consider the following parameters. Let 𝑐1be the 
harvesting cost per unit effort for prey species, 𝑝1be the price per 
unit biomass of the prey, 𝑐2 be the harvesting cost per unit effort for 
predator species, 𝑝2be the price per unit biomass of the predator, 
𝑐3 be the harvesting cost per unit effort for competitor to the 
predator species and 𝑝3 be the price per unit biomass of the 
competitor to the predator species, Then the net economic rent (net 
revenue) for the prey, predator and competitor to the predator at 
any time is given by: 

 𝑅 =  𝑝1𝑞1Ν1 − 𝑐1 Ε1 +  𝑝2𝑞2Ν2 − 𝑐2 Ε2 +  𝑝3𝑞3Ν3 − 𝑐3 Ε3 =
𝑅1 + 𝑅2 + 𝑅3 

Where𝑅1 =  𝑝1𝑞1Ν1 − 𝑐1 Ε1, 𝑅2 =  𝑝2𝑞2Ν2 − 𝑐2 Ε2 and 
𝑅3 =  𝑝3𝑞3Ν3 − 𝑐3 Ε3.  

𝑅1, 𝑅2 and 𝑅3 represent the net revenues for the prey, predator and 
competitor to the predator species respectively.  

The bionomic equilibrium 
  Ν1 ∞ ,  Ν2 ∞ ,  Ν3 ∞ ,  E1 ∞ ,  E2 ∞ ,  E3 ∞  is given by the following 
simultaneous equations.  
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 𝑎Ν1 − 𝑏 Ν1 

2 − 𝑐Ν1Ν2 − 𝑞1Ε1Ν1 = 0                                          

  𝑑Ν2 − 𝑒 Ν2 
2 + 𝑓Ν1Ν2 − 𝑔Ν2Ν3 − 𝑞2Ε2Ν2 = 0                        

𝑕Ν3 − 𝑘 Ν3 
2 − 𝑚Ν2Ν3 − 𝑞3Ε3Ν3 = 0                                    

 𝑝1𝑞1Ν1 − 𝑐1 Ε1 +  𝑝2𝑞2Ν2 − 𝑐2 Ε2 +  𝑝3𝑞3Ν3 − 𝑐3 Ε3 = 0  (44)

   

In order to determine the bionomic equilibrium we come across the 
following cases.  

Case (1): When 𝑐2 > 𝑝2𝑞2Ν2 and 𝑐3 > 𝑝3𝑞3Ν3, the cost is greater 
than revenue for the predator and competitor to the predator 
species, then the predator and competitor to predator species are 
not harvested. The predator and competitor to the predator 
harvesting is stopped Ε2 = 0, Ε3 = 0 . Then only prey harvesting 
remains operational 𝑐1 < 𝑝1𝑞1Ν1 . Therefore Ε2 =  Ε3 = 0 and 

𝑐1 < 𝑝1𝑞1Ν1, we have 𝑁1 ∞ =
𝑐1

𝑝1𝑞1
. 

Case (2): When 𝑐1 > 𝑝1𝑞1Ν1 and 𝑐3 > 𝑝3𝑞3Ν3the cost is greater than 
revenue for the prey and competitor to the predator species, then 
the prey and competitor predator species are not harvested. The 
prey and competitor to the predator harvesting is stopped Ε1 =
0, Ε3 = 0 . Then only predator harvesting remains operational𝑐2 <
𝑝2𝑞2Ν2. Therefore Ε1 =  Ε3 = 0 and 𝑐2 < 𝑝2𝑞2Ν2, we have Ν2 ∞ =
𝑐2

𝑝2𝑞2
.   

Case (3): When 𝑐1 > 𝑝1𝑞1Ν1and 𝑐2 > 𝑝2𝑞2Ν2, the cost is greater 
than revenue for the prey and predator species, then the prey and 
predator species are not harvested. The prey and predator harvesting 
is stopped Ε1 = Ε2 = 0 . Then only predator harvesting remains 
operational 

 𝑐3 < 𝑝3𝑞3Ν3 . Therefore Ε1 = Ε2 = 0 and𝑐3 < 𝑝3𝑞3Ν3, we 

have Ν3 ∞ =
𝑐3

𝑝3𝑞3
.  

Case (4): When𝑐1 > 𝑝1𝑞1Ν1, 𝑐2 > 𝑝2𝑞2Ν2 and  𝑐3 > 𝑝3𝑞3Ν3 then 
the cost is greater than revenues for both species and the whole 
harvesting will be closed.  

Case (5): When𝑐1 < 𝑝1𝑞1Ν1, 𝑐2 < 𝑝2𝑞2Ν2 and  𝑐3 < 𝑝3𝑞3Ν3 the cost 
is less than the revenue for both species, then both species is 
harvested. This implies that the revenues for both species being 
positive; so the whole harvesting will be in operation (the system 

becomes operational). In this case  Ν1 ∞ =
𝑐1

𝑝1𝑞1
 ,  Ν2 ∞ =

𝑐2

𝑝2𝑞2
 

and Ν3 ∞ =
𝑐3

𝑝3𝑞3
. By substituting the values of Ν1 ∞ ,  Ν2 ∞  and 

 Ν3 ∞  in to the 1
st

, 2
nd

, and 3
rd

 equation of (3.44) we obtain: 

  Ε1 ∞ =
1

𝑞1
 
𝑎𝑝1𝑝2𝑞1𝑞2−𝑏𝑝2𝑞2𝑐1−𝑐𝑝1𝑞1𝑐2

𝑝1𝑝2𝑞1𝑞2
                                                     

(45) 

  Ε2 ∞ =
1

𝑞2
 
𝑑𝑝1𝑝2𝑝3𝑞1𝑞2𝑞3−𝑒𝑝1𝑝3𝑞1𝑞3𝑐2+𝑓𝑝2𝑝3𝑞2𝑞3𝑐1−𝑔𝑝1𝑝2𝑞1𝑞2𝑐3

𝑝1𝑝2𝑝3𝑞1𝑞2𝑞3
       

(46)                  

  Ε3 ∞ =
1

𝑞3
 
𝑕𝑝2𝑝3𝑞2𝑞3−𝑘𝑝2𝑞2𝑐3−𝑚𝑝3𝑞3𝑐2

𝑝2𝑝3𝑞2𝑞3
                                                      

(47)                               

But  Ε1 ∞ > 0 if 𝑎𝑝1𝑝2𝑞1𝑞2 > 𝑏𝑝2𝑞2𝑐1 + 𝑐𝑝1𝑞1𝑐2                           (48)                                  

 Ε2 ∞ > 0 if 𝑑𝑝1𝑝2𝑝3𝑞1𝑞2𝑞3 + 𝑓𝑝2𝑝3𝑞2𝑞3𝑐1 > 𝑒𝑝1𝑝3𝑞1𝑞3𝑐2 +
𝑔𝑝1𝑝2𝑞1𝑞2𝑐3                                                                                                 
(49) 

  Ε3 ∞ > 0 𝑖𝑓 𝑕𝑝2𝑝3𝑞2𝑞3 > 𝑘𝑝2𝑞2𝑐3 + 𝑚𝑝3𝑞3𝑐2                              
(50)                                               

Thus the nontrivial bionomic equilibrium point 
  Ν1 ∞ ,  Ν2 ∞ ,  Ν3 ∞ ,  Ε1 ∞  ,  Ε2 ∞ ,  Ε3 ∞  exist if conditions (48) - 
(50) hold. 

2.5  Qualitative Analysis Of Optimal Harvesting Policy  

In commercial exploitation of renewable resources the fundamental 
problem from the economic point of view, is to determine the 
optimal trade-off between present and future harvests. If we look at 
the problem it is observed that the marine fishery sectors become 
more important not only for domestic demand but also from the 
imperatives of exports. In this section we study optimal harvesting 
policy of the system of equation (1) - (3); and also our objective is to 
maximize, the objective functional form of the harvesting model, with 

the instantaneous annual rate of discount   is as follows: 

𝒥 Ε1 , Ε2, Ε3 =  𝑒−𝛿𝑡   𝑝1𝑞1Ν1 − 𝑐1 Ε1 𝑡 +  𝑝2𝑞2Ν2 −
∞

0

𝑐2 Ε2 𝑡 +  𝑝3𝑞3Ν3 − 𝑐3 Ε3 𝑡  𝑑𝑡                                              (51) 
Subject to the state constraints (3.1) - (3.3) with control constraints 
(variables) 0 ≤ Ε𝑖 𝑡 ≤ Ε𝑖

𝑚𝑎𝑥 , 𝑖 = 1, 2, 3 
Firs we construct the following Hamiltonian function for the problem 
by:  

Η = e
t
  𝑝1𝑞1Ν1 − 𝑐1 Ε1 𝑡 +  𝑝2𝑞2Ν2 − 𝑐2 Ε2 𝑡 +

 𝑝3𝑞3Ν3 − 𝑐3 Ε3 𝑡   +𝜆1 𝑎Ν1 − 𝑏 Ν1 
2 − 𝑐Ν1Ν2 − 𝑞1Ε1Ν1  

+𝜆2 𝑑Ν2 − 𝑒 Ν2 
2 + 𝑓Ν1Ν2 − 𝑔Ν2Ν3 − 𝑞2Ε2Ν2  + 𝜆3 𝑕Ν3 −

𝑘 Ν3 
2 − 𝑚Ν2Ν3 − 𝑞3Ε3Ν3                                                                            

(52)                               

Where 𝜆1, 𝜆2  𝑎𝑛𝑑 𝜆3 additional unknown functions are called the 
adjoint variables.                                                           

Now by differentiating  with respect to Ε1 , Ε2 and Ε3 respectively, 
we obtain: 

 
𝜕Η

𝜕Ε1
= 𝑒−𝛿𝑡  𝑝1𝑞1Ν1 − 𝑐1 − 𝜆1𝑞1Ν1 = 𝜑1(𝑡)                             (53) 

𝜕Η

𝜕Ε2
= 𝑒−𝛿𝑡  𝑝2𝑞2Ν2 − 𝑐2 − 𝜆2𝑞2Ν2 = 𝜑2(𝑡)                             (54)

   𝜕Η

𝜕Ε3
= 𝑒−𝛿𝑡  𝑝3𝑞3Ν3 − 𝑐3 − 𝜆3𝑞3Ν3 = 𝜑3(𝑡)                             (55)    

The optimal control Ε𝑖(𝑡) must satisfy the condition:  

  𝐸𝑖 𝑡 =  
𝐸𝑖

𝑚𝑎𝑥  𝑖𝑓 𝜑𝑖 𝑡 > 0

0     𝑖𝑓 𝜑𝑖 𝑡 > 0   
                     (56)                                                                                 

Since φ𝑖(𝑡)  causes Ε𝑖(𝑡),  3,2,1i   to switch between 0 and 

𝐸𝑖
𝑚𝑎𝑥  so φ𝑖(𝑡)  3,2,1i  are called switching function. Depending 

on the sign of the switching function φ𝑖(𝑡), the optimal control  Ε𝑖(𝑡) 
is a bang– bang switching from one extreme point to other one. 

When φ𝑖 𝑡 = 0  3,2,1i , the Hamiltonian function   

becomes independent of the control variable Ε𝑖(𝑡),  3,2,1i   

and the optimal control cannot be determined by the above 
procedure. It is then called a singular control 

 Ε𝑖
∗(𝑡), 0 < Ε𝑖

∗ 𝑡 < Ε𝑖
𝑚𝑎𝑥 (𝑡).  Hence the optimal harvesting policy is 
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 𝐸𝑖(𝑡) =

 
 
 
 

 
 
 𝐸𝑖

𝑚𝑎𝑥  𝑖𝑓  t
i

  > 0 

0     𝑖𝑓    0t
i



E i

*
 if    0t

i


    For 3,2,1i                      (57) 

The aim is to find an optimal equilibrium 
  Ν1 𝛿 ,  Ν2 𝛿 ,  Ν3 𝛿 ,  Ε1 𝛿 ,  Ε2 𝛿 ,  Ε3 𝛿   to maximize Hamiltonian

 . Since Hamiltonian  is linear in the control variablesΕ1, Ε2 and 
Ε3 the optimal control can be extreme controls or the singular 
controls.

 

Thus for singular control   0t
i

   3,2,1i , from equations 

(3.53) - (3.55) solving for  3,2,1, i
i we obtain: 

 𝜆1 = 𝑒−𝛿𝑡  𝑝1 −
𝑐1

𝑞1Ν1
                                                                      (58)

                                                                            

              

 

𝜆2 = 𝑒−𝛿𝑡  𝑝2 −
𝑐2

𝑞2Ν2
                                                                      (59)         

 

𝜆3 = 𝑒−𝛿𝑡  𝑝3 −
𝑐3

𝑞3Ν3
                                                                      (60) 

In this case, the optimal control is called the singular control and 
equations (3.58) - (3.60) are the necessary conditions for the 
maximization of HamiltonianΗ.62) 

By Pontryagin’s Maximum Principle, the adjoint equations are: 

 
dλ1

dt
= −

∂Η

∂Ν1
,

dλ2

dt
= −

∂Η

∂Ν2
,

dλ3

dt
= −

∂Η

∂Ν3
                                               (61) 

Now, by using equation (3.61) we obtain 

 
𝑑𝜆1

𝑑𝑡
= −𝑒−𝛿𝑡𝑝1𝑞1Ε1 − 𝜆1 𝑎 − 2𝑏Ν1 − 𝑐Ν2 − 𝑞1Ε1 − 𝜆2𝑓Ν2     (62)                 

Substituting 𝑎 = 𝑏Ν1 + 𝑐Ν2 + 𝑞1Ε1 and (3.59) in to the equation (62) 
we obtain:     

𝑑𝜆1

𝑑𝑡
= −𝑒−𝛿𝑡𝑝1𝑞1Ε1 + 𝑏Ν1𝜆1 − 𝑒−𝛿𝑡  𝑝2 −

𝑐2

𝑞2Ν2
   or 

𝑑𝜆1

𝑑𝑡
− 𝑏Ν1𝜆1 = −𝑒−𝛿𝑡𝑝1𝑞1Ε1 − 𝑒−𝛿𝑡  𝑝2 −

𝑐2

𝑞2Ν2
   

This is of the form: 

𝑑𝜆1

𝑑𝑡
+ A1𝜆1 = −𝐴2𝑒

−𝛿𝑡                                                                          (63) 

where Α1 = −𝑏Ν1  and Α2 =  𝑝1𝑞1Ε1 +  𝑝2 −
𝑐2

𝑞2Ν2
   

The above equation is linear in 𝜆1 and its solution is given by: 

𝜆1 = −
Α2

Α1−𝛿
𝑒−𝛿𝑡                                                                                    (64) 

and also 

𝑑𝜆2

𝑑𝑡
= −𝑒−𝛿𝑡𝑝2𝑞2Ε2 + 𝑐Ν1𝜆1 − 𝜆2 𝑑 − 2𝑒Ν2 + 𝑓Ν1 − 𝑔Ν3 −

𝑞2Ε2 + 𝑚Ν3𝜆3                                                                                    (65) 

Substituting 𝑑 =  𝑒Ν2 − 𝑓Ν1 + 𝑔Ν3 + 𝑞2Ε2 and equations (3.58) in 
to (3.65) we obtain: 

 
𝑑𝜆2

𝑑𝑡
+ B1𝜆2 = 𝐵2𝑒

−𝛿𝑡                                                                           (66) 

where 𝐵1 = −𝑒Ν2  and 𝐵2 =  𝑝1 −
𝑐1

𝑞1Ν1
 𝑐Ν1 +  𝑝3 −

𝑐3

𝑞3Ν3
 𝑚Ν3 −

𝑝2𝑞2Ε2

 

The above equation is linear in  𝜆2 and its solution is given by: 

𝜆2 =
𝐵2

𝐵1−𝛿
𝑒−𝛿𝑡                                                                                       (67) 

Similarly, 

 

𝑑𝜆3

𝑑𝑡
= −𝑒−𝛿𝑡𝑝3𝑞3Ε3 + 𝑔Ν2𝜆2 − 𝜆3 𝑕 − 2𝑘Ν3 − 𝑚Ν2 − 𝑞3Ε3  (68)                     

Now by substituting 𝑕 = 𝑘Ν3 + 𝑚Ν2 + 𝑞3Ε3, equation (58) and (59) 
in to (68) we obtain:  

𝑑𝜆3

𝑑𝑡
+ C1𝜆3 = 𝐶2𝑒

−𝛿𝑡                                                                             (69) 

Where 𝐶1 = −𝑘Ν3 and 𝐶2 =   𝑝2 −
𝑐2

𝑞2Ν2
 𝑔Ν2 − 𝑝3𝑞3Ν3    

The above equation is linear in  𝜆3 and its solution is given by: 

 

𝜆3 =
𝐶2

𝐶1−𝛿
𝑒−𝛿𝑡                                                                                       (70) 

It is obviously that )(),(
21

tt   and )(
3

t are bounded as

t .  From (3.58) and (3.64) we obtain a singular path 

p1 −
c1

q1Ν1
=  −

Α2

Α1−δ
                                                                                      

(71) 

And also from (3.59) and (3.67), we obtain a singular pat 

 

𝑝2 −
𝑐2

𝑞2𝛮2
=  

𝐵2

𝐵1−𝛿
                                                                                       

(72) 

Similarly, from (60) and (70) we obtain a singular path 

  

𝑝3 −
𝐶3

𝑞3Ν3
=  

C2

C1−𝛿
                                                                                    (73) 

Let Ϝ Ν 1 =  𝑝1 −
𝑐1

𝑞1Ν1
 +

A2

A1−𝛿
 , 𝐺 Ν 2 =  𝑝2 −

𝑐2

𝑞2Ν2
 −

B2

B1−𝛿
 and 

ℳ Ν 3 =  𝑝3 −
𝑐3

𝑞3Ν3
 −

C2

C1−𝛿
 then there exists a unique positive 

root Ν 1 =  Ν1 𝛿  of  Ϝ Ν 1 = 0 in the interval 0 < Ν 1 < 𝑘1 if the 
following inequalities hold: 

Ϝ 0 < 0, Ϝ k1 > 0, Ϝ′ Ν 1 > 0 for Ν 1 > 0 

And also there exists a unique positive root Ν 2 =  Ν2 𝛿 of 

𝐺 Ν 2 = 0 in the interval 0 < Ν 2 < 𝑘2 if the following inequalities 
hold: 

𝐺 0 < 0, 𝐺 k2 > 0, 𝐺′ Ν 2 > 0 for Ν 2 > 0  

Similarly, there exists a unique positive root Ν 3 =  Ν3 𝛿of 

ℳ Ν 3 = 0 in the interval 0 < Ν 3 < 𝑘3 if the following inequalities 
hold: 

ℳ 0 < 0, ℳ k3 > 0, ℳ′ Ν 3 > 0 for Ν 3 > 0 

Now, for Ν 1 =  Ν1 𝛿  , Ν 2 =  Ν2 𝛿 and Ν 3 =  Ν3 𝛿we get: 

 Ν1 ∞ =  
c1

p1q1
,  Ν2 ∞ =  

c2

p2q2
,  Ν3 ∞ =  

c3

p3q3
,                                           

 Ε1 𝛿 =  
𝑎𝑝1𝑝2𝑞1𝑞2−𝑏𝑝2𝑞2𝑐1−𝑐𝑝1𝑞1𝑐2

𝑝1𝑝2 𝑞1 
2𝑞2

  

 Ε2 𝛿 =  
𝑑𝑝1𝑝2𝑝3𝑞1𝑞2q3−𝑒𝑝1𝑝3𝑞1𝑞3𝑐2+𝑓𝑝2𝑝3𝑝3𝑞2𝑞3c1−𝑔𝑝1𝑝2𝑞1𝑞2𝑐3

𝑝1𝑝2𝑝3𝑞1 𝑞2 
2𝑞3

   

And  Ε3 𝛿 =  
h𝑝2𝑝3𝑞2𝑞3−𝑘𝑝2𝑞2𝑐3−𝑚𝑝 3𝑞3𝑐2

𝑝2𝑝3𝑞2 𝑞3 
2  

Hence once the optimal equilibrium   Ν1 𝛿  ,  Ν2 𝛿   Ν3 𝛿    is 
determined, the optimal harvesting effort   Ε1 𝛿 ,  Ε2 𝛿 ,  Ε3 𝛿  can 
be determined. From (64), (67) and (70) we found that 𝜆𝑖(𝑡) where
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3,2,1i  do not vary with time in optimal equilibrium. Hence they 

remains bounded as t . From (71), (72) and (73) we note that: 

 p1 −
c1

q1Ν1
=  −

Α2

Α1−δ
 ⟶ 0 as δ ⟶ 0 

p2 −
c2

q2Ν2
=  

B2

B1−δ
⟶ 0 as δ ⟶ 0   and  

p3 −
c3

q3Ν3
=  

C2

C1−δ
⟶ 0 as δ ⟶ 0  .        

Thus, the net economic revenue for the Prey population 𝑅1 = 0, the 
net economic revenue for the predator population 𝑅2 = 0 and the 
net economic revenue for the competitor to the Predator 
population 𝑅3 = 0. From this we conclude that, if the discount rate 
increases, then the net economic revenue decrease and even may 
tend to zero if the discount rate tends to infinity. Hence finally we 
remarked that high interest rate will cause high inflation rate. 

3. Numerical simulation 

In this section, we substantiate as well as augment our analytical 
findings through numerical simulations considering the interval 
parameters.  For this, numerical examples are obtained to illustrate 
the proposed methodology presented in this paper.  

Example: Let us consider a set of artificial values of parameters as 
follows in appropriate units: 

𝑟 =  2.5, 3 , 𝛼1 =  0.2, 0.6 , 𝛼2 =  0.7, 0.8 , 𝛼3 =  0.5, 0.9 , 
𝑠 =  4.5, 5 , 𝛽1 =  0.8, 0.9 , 𝛽2 =  0.2, 0.4 , 𝛽3 =  0.5, 0.6 , 

ℓ =  5.5, 6 , 𝛿1 =  0.2, 0.5 , 𝑞1 = 0.2, 𝑞2 = 0.5, 𝑞3 = 0.8, Ε1 = 10, 
Ε2 = 8, Ε3 = 6 and 𝑝 ∈  0, 1 . 

The trivial equilibrium point (0,0,0)
 
always exists for all values of

 1,0p . The non-trivial equilibrium points and the Eigen values of 

variational matrices at the corresponding points of co-existence 
equilibriums are given in table1below for different values of p in

 1,0 .

Table -2:  

Values of p  Equilibrium states Eigen values Nature of the equilibrium states 

0 0.29, 0.362, 0.536 −0.636, −0.156 − 0.111𝑖, −0.156 + 0.111𝑖 Stable 

0.1 0.294, 0.435, 0.578 −0.674,−0.144 − 0.117𝑖,−0.144 + 0.117𝑖 Stable 

0.2 0.292, 0.515, 0.623 −0.665,−0.18 − 0.126𝑖, −0.18 + 0.126𝑖 Stable 

0.3 0.275, 0.601, 0.661 −0.793,−0.164 − 0.125𝑖, −0.164 + 0.125𝑖 Stable 

0.4 0.281, 0.674, 0.729 −0.783,−0.188 − 0.156𝑖, −0.188 + 0.156𝑖 Stable 

0.5 0.275, 0.755, 0.791 −0.812,−0.179 − 0.155𝑖, −0.179 + 0.155𝑖 Stable 

0.6 0.261, 0.842, 0.856 −0.846, −0.168 − 0.148𝑖, −0.168 + 0.148𝑖 Stable 

0.7 0.322, 0.929, 0.967 −0.943, −0.193 − 0.178𝑖,−0.193 + 0.178𝑖 Stable 

0.8 0.149, 1.079, 0.928 −0.962, −0.254, −0.128 Stable 

0.9 0.195, 1.134, 1.162 −1.017, −0.197 − 0.124𝑖,−0.197 + 0.124𝑖 Stable 

1 0.2, 1.2, 1.2 −1.072, −0.204 − 0.122𝑖,−0.204 + 0.122𝑖 Stable 

From the above table we observe that there are different equilibrium 
points for different values of p. We also see that the Eigen values 
corresponding to different equilibrium points are complex conjugate 
with negative real part. Therefore the equilibrium points are stable. 

The fluctuation of prey, predator and competitor to the predator 
population with respect to time beginning with Ν1 = 1, Ν2 = 1.09 
and Ν3 = 1.1 for  𝑝 = 0.7, 𝑝 = 0.8, 𝑝 = 0.9 and 𝑝 = 1 are depicted 
in following Figures respectively.  
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Figure – 1: Variation of prey, predator and competitor to the predator population against the time for different values of p 
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4. Conclusions and recommendations  

4.1   Conclusions 

Prey–predator (competitor) harvesting model has undergone 
different development in theoretical and practical applications in the 
field of biomathematics. Most of the researchers have developed the 
prey, predator and competitor to the predator harvesting model 
based on the assumption that the biological parameters are precisely 
known but the scenario is different in real life situation. In this paper, 
we developed a method to find the biological equilibrium points, bio-
economic equilibrium points and optimal harvesting policy when 
some biological parameters are imprecise in nature. Here we develop 
the concepts imprecise parameters to the prey, predator and 
competitor to the predator harvesting model by considering the prey 
population growth rate, predator population growth rate, competitor 
to the predator growth rate and predation coefficients are imprecise 
in nature for the lack of precise numerical information. The ability of 
calculating the biological equilibrium points, bio-economic 
equilibrium points and optimal harvesting policy developed in this 
paper might help to develop more realistic mathematical models in 
the area of mathematical biology. Before ending this article we would 
like to mention that one may consider Lotka–Volterra model with 
logistic growth under imprecise biological parameters. Impreciseness 
of the harvesting cost and price of the biomass of the species of the 
harvesting model are also important characteristic to be considered. 

4.2 Recommendation 

Basing on the results of qualitative analysis and numerical simulation 
of the model, we recommend that; 

 Prey-predator (competitor) should not be harvested at a rate 
higher than their growth rate. However optimal harvesting of 
the prey-predator (competitor) at a rate much lower than their 
growth rate is permissible, since this would not lead to collapse 
of the system in the long term. 

 The population density of the predator can be increased 
drastically by increasing the growth rate of the prey species e.g. 
regular recruiting more prey into the area. Since regular 
recruiting of prey may not be realistic, the best alternative is to 
minimize or stop poaching of the preys so as to greatly increase 
the number of their population in that area, which will in turn 
result in an increase in the population of the predator. But the 
number of population of competitor to the predator does not 
dependent on the number of prey population; it depends on the 
number of predator population that competes’ with them for 
common resource. This common resource may be additional 
resources for predator population. 

i. The population density of the predator depends mainly on the 
biomass of the prey than that of   competitor; hence any attempt to 
control the population density of the predator should be based on 
controlling the population density of the prey. 

 

Figure -2: Prey predator examples 
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