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Abstract 

The increasing popularity of the internet suggests that digital multimedia has become easier to transmit and 
acquire more rapidly. This also means that this multimedia has become more susceptible to tampering 
through forgery. One type of forgery, known as copy-move duplication, is a specified type that usually 
involves image tampering. In this study, a keypoint-based image forensics approach based on a superpixel 
segmentation algorithm and Helmert transformation has been proposed. The purpose of this approach is 
to detect copy-move forgery images and to obtain forensic information. The procedure of the proposed 
approach consists of the following phases. First, we extract the keypoints and their descriptors by using a 
scale-invariant feature transform (SIFT) algorithm. Then, based on the descriptor, matching pairs will be 
obtained by calculating the similarity between keypoints. Next, we will group these matching pairs based 
on spatial distance and geometric constraints via Helmert transformation to obtain the coarse forgery 
regions. Then, we refine these coarse forgery regions and remove mistakes or isolated areas. Finally, the 
forgery regions can be localized more precisely. Our proposed approach is a more robust solution for 
scaling, rotation, and compression forgeries. The experimental results obtained from testing different 
datasets demonstrate that the proposed method can obtain impressive precision/recall rates in comparison 
to state-of-the-art methods. 
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1. Introduction 

As a result of technological advances and the convenience of the internet, human beings are now able to 
easily access interesting multimedia from the internet and remake or tamper with it as they see fit. Copy-
move forgery imaging is a special type of forgery that involves copying parts of an image and then pasting 
the copied parts into the same image. Hence, image forensics associated with copy-move forgery detection 
have become increasingly important in our networked society. The technology used in image forensics can 
be categorized into passive detection or active detection [1]. The active detection method requires prior 
information derived from an image to identify the image authenticity, such as watermarking. Contrary to 
active detection methods, passive detection methods are not required to obtain previous information on an 
image. Passive detection methods can utilize the advantages of the detective strategy to find the tampering 
regions. Hence, a large majority of image forgery detection methods adopt a passive-based strategy to 
perform the type of tampering identification discussed in the present study. Passive detection technology 
can be categorized into block-based methods [2, 3, 4, 5, 6, 7, 8, 9, 10] and keypoint-based methods 
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. In the present study, we focus on the keypoint-based approach. 

Block-based methods segment an image into overlapping blocks and then extract features from those 
blocks. The forgery regions are determined by computing the similarity between block features. Wang et 
al. [2] proposed block-based forensics to detect region duplication for an image. The method mainly used 
the mean intensities of a circle with different radii around the center of the block to represent the features 
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of the block. Ryu et al. [3, 4] used Zernike moments as block features. The method can identify the forged 
region by copy-rotate-move forgery. Huang et al. [5] proposed a discrete cosine transform (DCT)-based 
forgery detection method. The image is first divided into overlapping blocks and the DCT is applied, thus 
the DCT coefficients for each block are quantized by fixed stepsize q and then rounded to the nearest 
integer. A row vector as block feature can then be obtained by using a zigzag scan. The duplicated image 
blocks are compared in the matching step. This method can detect JPEG compression, but the DCT-based 
feature vector cannot resist geometrical tampering. 

Wang et al. [6] proposed a forgery method that combines the discrete wavelet transform (DWT) and the 
DCT. The DWT and DCT are applied to each image block to extract features. The coefficients obtained by 
the DWT and DCT are multiplied to form the eigenvectors. Then, the similarity of two blocks is estimated, 
along with the mean and variance distances between the eigenvalues in their corresponding eigenvectors. 
This method can resist JPEG compression but not image processing operations. 

Bravo-Solorio and Nandi [7] proposed a polar-based forgery detection method to detect copy-move attacks 
for an image. This method subdivided an image into overlapping blocks of pixels. The pixels within the block 
are first transformed into log-polar maps (LPM), and then summed along the angle axis, to generate one-
dimensional descriptors. Subsequently, they will compute the Fourier coefficient magnitude after Fourier 
transformation. The descriptors are invariant to reflection and rotation. The descriptor of each block is used 
to compute the information entropy as block features. By computing the entropy difference between blocks, 
the similar regions are found. However, a significant amount of smooth duplication regions may arise during 
mistake detection. 

Davarazni et al. [8] used multiresolution local binary patterns (MLBP) for forgery detection. This method 
used LBP operations to extract feature vectors for each block, and then sorted these vectors based on 
lexicographical order. The duplicated image blocks are detected in the block matching step using a k-tree. 
This method is time consuming and does not detect any rotation angles for duplication regions. Lee et al. 
[9] used a histogram of oriented gradients (HOG) of each block as features; these features are ordered by 
using lexicographical sorting. The duplicated image blocks are detected by measuring similar block pairs. 
Li et al. [10] used a polar harmonic transform to extract the rotation and scaling invariant features as block 
features (similar to the method of Lee et al. [9]). These feature vectors are lexicographically sorted, and the 
forged regions are detected by finding similar block pairs. 

In keypoint-based methods, image features are extracted and matched with the entire image to identify the 
regions that were tampered with. Common and well-known feature points have scale-invariant feature 
transform (SIFT) [22] features and speedup robust features (SURF) [23]. These feature points have been 
widely used for image retrieval and object recognition because of their robustness in geometrical 
transformations (e.g., scaling and rotation). Based on these advantages, these features have been applied 
to digital forensics. In [11, 12], these methods applied a SIFT to the host image to extract keypoints, which 
were then matched to one another. When the value of the displacement vector exceeded the threshold, the 
sets of corresponding SIFT keypoints are labeled as the tampered regions. The method used for combining 
the SIFT keypoints and J-linkage algorithm to localize the forgery regions has been reported [13]. 

In [14, 15], the SURFs were applied to extract the keypoint features, which makes it possible to detect 
duplicated regions of various sizes. Additionally, Mishra et al. [15] also used hierarchical agglomerative 
clustering (HAC) to group the matched keypoints from these sets of keypoints. Several different 
technologies based on SURF and SIFT and Harris were applied in [16, 17]. Pun et al. [18] integrated both 
the block-based and keypoint-based methods to detect the forged regions. Several keypoint-based 
methods involved with segmentation methods have been reported in the following references: 
[19, 20, 21, 24, 25, 26, 27]. Christlein et al. [28] evaluated the performance of feature sets in existing copy-
move forgery detection algorithms. 

Many methods from the literature deal only with simple copy-move forgery scenarios, while other 
approaches present relevant contributions toward the detection of sophisticated tampering. However, these 
approaches still have major limitations. Most of the current block-based methods use a similar framework; 
the main differences between frameworks are that they use different feature extraction methods to extract 
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the block features. The block-based detection of forgery regions can be time-consuming because the host 
image is divided into overlapping blocks, and they cannot detect geometrical transformations of the forgery 
regions. In contrast, the keypoint-based forgery detection methods can detect geometrical transformations 
and require less computational resources; however, they do not have good localization power. Thus, there 
is room for improving true positive rate (TPR) results. Based on the above reasons, we propose conducting 
image forensics based on an simple linear iterative clustering (SLIC) algorithm [29] and Helmert 
transformation [30] to achieve copy-move forgeries with rotations, resizings, and combinations of the two. 
This proposed scheme uses the SIFT algorithm to extract the keypoints from an image and then designs 
our algorithm. Our approach can efficiently resist geometrical transformations and JPEG compressions, 
and localize the forgery regions more precisely at a reasonable computational cost. 

The rest of this study is organized as follows. Section 2 presents the related techniques. The proposed 
method is described in Section 3. In Section 4, we present the experimental results to verify the robustness 
of the proposed algorithm. Finally, Section 5 concludes this study. 

  2.Literature survey 
 

In this section, we briefly describe the related methods that apply to our proposed approach. 

2.1 Superpixel segmentation 

One type of image segmentation method is called the superpixel segmentation method. It groups the pixels 
of an image into perceptually meaningful atomic regions that can be used to replace the rigid structure of 
the pixel grid. A simple linear iterative clustering (SLIC)-based superpixel algorithm is proposed by Achanta 
et al. [29]. It uses a k-means clustering approach to efficiently generate superpixels, and it can adhere to 
the boundaries very well. The only parameter (k) in the SLIC algorithm is to assign the desired number of 
approximately equally sized superpixels. The algorithm is briefly described in the following paragraph. 
Details of the procedures have been reported in [29]. 

This SLIC algorithm is adopted in CIELAB color space. The SLIC algorithm adapts a k-means clustering 
approach to efficiently generate the superpixels, and it adheres to the boundaries very well. First, the 
clustering procedure begins with an initialization step where the k initial cluster centers, where (l, a, b) are 
the three color components of a pixel, and (x, y) are its two spatial coordinates, are sampled on a regular 
grid (called a superpixel), spaced S pixels apart. The S interval is N/k−−−√N/k, in which Nrepresents the 
number of pixels for an image. In order to avoid centering a superpixel on an edge or on a noisy pixel, the 
centers are moved to seed locations corresponding to the lowest gradient position in 
a n × n neighbCi = [li, ai, bi, xi, yi]T, i = 1, 2, ⋯, k,orhood. As is known to us, the edge or noisy pixel is often 
positioned on a pixel point that has the largest gradient variation. Therefore, selecting the lowest gradient 
pixel point to position the center for a superpixel can efficiently reduce the chance of seeding a superpixel 
with an edge or a noisy pixel. 
Additionally, in order to speed up the SLIC algorithm, the search area is reduced to the size of 
2S × 2S around the superpixel center, in contrast to the traditional K-means clustering method. Then, by 
computing the distance between the center point and other pixel points within the cluster, an update step 
adjusts the cluster centers to be the mean vector of all the pixels belonging to the cluster, once each pixel 
has been associated to the nearest cluster center. The residual error is computed by means of the L2 norm 
between the new cluster center locations and previous cluster center locations. Finally, the assignment and 
updated steps can be repeated iteratively until the error converges. As [29] discussed, after iterating ten 
times, most images can achieve the convergence. Figure 1 shows an example of SLIC segmentation for a 
superpixel that is roughly the size of 300 pixels. 
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Fig. 1 An example of SLIC segmentation. Every superpixel is approximately the size of 300 pixels 
2.2 Helmert transformation 

In our work, since all points lie in a plane, the Helmert transform becomes transformations from one 
rectangular coordinate system to another rectangular system. These transformations include rotation, 
scaling, and translations for all points. The transformation equations can be formed in matrix notation using 
mathematical operations [30]. 
[XpYp]=[A−BBA][xpyp]+[txty],[XpYp]=[AB−BA][xpyp]+[txty], 
(1) 

where (xp, yp) coordinates are transformed into (Xp, Yp) coordinates by the addition of 
translations tx and ty. A and B are the transformation parameters. This transformation is called the Helmert 
transformation [30], also known as similarity transformation. Helmert transformations have a lower degree 
of freedom, therefore they have lower computational complexity available to transform the coordinates of 
points in one point (x, y) into coordinates in another point (X, Y). As shown in Eq. (1), only four parameters 
are needed to compute the coordinate transformations, such as rotation, scaling, and translations. In 
addition, a well-known transformation known as the affine transformation usually uses map coordinate 
transformations. However, affine transformations require six parameters to achieve transformations. The 
advantages of the Helmert transformation include not only resistance to rotation, scaling, and translations, 
but also reduced computational complexity. For instance, given the coordinates of two pairs, we can obtain 
four parameters of Helmet transformation by Eq. (1). Hence, in our experiments, we adopt the Helmert 
transformation instead of affine transformation to acquire the coordinates after transformation. 

3. Proposed Method   
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In this study, we propose keypoint-based image forensics based on the Helmert transformation and SLIC 
algorithm. The main procedures include keypoint extraction and matching, clustering and group merging, 
and forgery region localization and refining. Figure 2 illustrates the flowchart of the proposed system. 
Details of procedures are described in the following subsections. 

 

Fig. 2 The flowchart of the proposed system 
 
3.1 Keypoint extraction and matching 

Based on the SIFT algorithm [22], we can obtain all candidates of keypoints and the corresponding 
descriptors for an image. Using these candidates, we will search for the best matching pairs to perform 
additional grouping. 

First, each keypoint within all candidates will compute the Euclidean distance between other keypoints via 
corresponding descriptors, and will also perform the matching operation. The nearest neighbor distance 
ratio (NNDR) [31], which is the ratio of the smallest distance to the second-smallest distance, is used to 
perform the matching. This ratio is depicted as 
D(A,B)D(A,C)≤TNNDR,D(A,B)D(A,C)≤TNNDR, 
 

where D is the Euclidean distance between the descriptors of two keypoints, keypoints A and B are the 
nearest neighbors, and keypoint A and keypoint C are the second-nearest neighbor. TNNDR is a constant 
value. If Eq. (2) is satisfied, keypoints A and B are regarded as a matching pair. Generally, keypoint A is 
the source point and keypoint B is the target point. Our approach uses the Euclidean distance between 
descriptors to estimate the similarities. 

After computing the distances for all keypoints, we can obtain all matching pairs in an image. In order to 
avoid incorrect matching pairs, if the distance between matched pairs is less than TNNDR, they will be ignored 
and deleted. 

3.2 Clustering and group merging 

Our clustering strategy includes clustering and group combining. We improve the clustering method 
proposed in [16] to perform the coarse clustering process. A clustering yields two match groups: source 
and destination. They are considered as correspondent regions inside the image and are good cloning. In 
[16], the clustering strategies only used spatial distance and correspondence angle between matched pairs 
to perform the clustering. However, when the forgery region is too large, it could result in the matching pairs 
belonging to the same group that are assigned to the different groups, as shown in Fig. 3. That is, a group 



6 
 

may be segmented into many subgroups. In Fig. 3, the red subgroups could not be merged together into a 
group, and the blue subgroups could not be merged together either. 

 

Fig. 3Clustering result based on [16]. The matching pairs belonging to the same group are segmented into 
different groups, such as red subgroups or blue subgroups 
 
Hence, in order to solve this problem, we improve the clustering strategies proposed by [16] to achieve the 
coarse clustering. The modified clustering schemes are described by the following. Given any two matching 
pairs belonging to corresponding subgroups (source and target subgroups), they are considered as 
correspondent regions in an image and are tampering candidates. 

 Spatial adjacency: consider that we have a match pair between keypoints A and Bbelonging to 
group G. Keypoint A might belong to the Gsource subgroup, and keypoint B might belong to the 
Gtarget subgroup, or vice versa. For a subgroup to admit a paired keypoint as a new member, the 
spatial distance between the keypoint and its nearest keypoint in such a subgroup needs to be 
smaller than a predefined threshold, Tc. Moreover, it is necessary to analyze both matched 
keypoints, since they have to be in the same group, but in different subgroups. 

 The angle consistency: the angle in the range of [0∘, 360∘] with a 15∘ step is used to determine the 
angle consistence. It can obtain 24 range partitions. As described above, a new 
keypoint A candidate to be included into Gsource will be included in Gsource, only if the angle of the 
line that connects the candidate point A and its matching point B stays in the same range of the 
other points in Gsource. 

After performing coarse clustering, we will further merge these clusters based on the Helmert transformation 
and spatial adjacent relationship between clusters. Therefore, the transformation can efficiently merge 
some clusters with a high correlation into a compact cluster. A Helmert transformation is used to describe 
the relationships between two different coordinate systems without distortion. In 2D space, the Helmert 
transformation is defined as Eq. (1). We use the Helmet transformation to analyze the geometric 
relationships between matching pairs. Assuming that the number of keypoints in a cluster is greater than 
one, we will compute the Helmert parameters of the cluster (source and target subgroup); otherwise, this 
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cluster will be discarded. For instance, given any two matching pairs, by assuming that (Xp, Yp) are target 
coordinates and (xp, yp) are source coordinates, the transformation can easily compute and obtain four 
Helmert parameters by Eq. (1). 

Assuming that there is a keypoint from another group, C′, within the search range we specified, this keypoint 
will be checked whether it belongs to source or target subgroup. It is because we do not constrain which 
keypoint stays in source or target subgroup for a matching pair in the previous matching process. During 
the matching process, the same region may be clustered into different groups, and the matching pairs may 
stay in the subgroup opposite to the other, as shown in Fig. 4a. Assuming that this keypoint belongs to the 
target subgroup in group C′, we will exchange all members in the target subgroup with those of the source 
subgroup in group C′, as shown in Fig. 4b. Afterwards, we transform all members in the source subgroup 
for group C′ to new members in target subgroup by means of the Helmert parameters derived from group C. 
Then, we will compute the difference in the spatial coordinates between target keypoints in group C and 
new target keypoints in group C′. When this difference is smaller than a threshold, Th, two groups are 
merged and then Helmert parameters derived from group C are updated. Based on our experimental test, 
we assigned the threshold value, Th = 10n, where n denotes the number of keypoints in the group. 

 

Fig. 4 An example for clustering profile. a The matching pairs stay in the opposite subgroup corresponding 
to group C and group C′ in the same region. b Clustering objective 
Next, we use a rectangular search range, which is defined as (xmax, ymax, xmin, ymin) belonging to the lower 
right and upper left coordinates of keypoints in source subgroup, to perform group merging. The target 
subgroup also creates a rectangular search range. If there is no keypoint presented in the rectangular 
search range, this rectangular range will expand the search range to find other clusters until one of the 
terminal conditions is satisfied. The terminal conditions are defined as follows. 

1.The number of the extension (Ne) has reached a value of five, and there is no cluster that can be 
combined. Here, the range of each extension (Re) is multiplied the rectangle searching region by a factor 
of 1.25. 

 2.The rectangle search region (Sr) is greater than 0.125 times of size of a host image. 
 Repeat the above steps until no clusters can be combined. Finally, we remove the invalid clusters that 
involve less than five keypoints. 

After performing the merging process, some clusters can be integrated into a larger cluster, as shown in 
Fig. 5. 
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Fig. 5 Clustering and merging results based on our proposed method 
 
3.3 Forgery regions localization and refining 

We use zero mean normalized cross-correlation (ZNCC) [32] to measure the similarity between source 
regions and target regions. Assuming that a Helmert transform matrix, H, exists, the relationships between 
source group and target group are expressed as [13]. Let a = [x1 y1]T be a point in the source cluster 
and b=[x2y2]Tb=[x2y2]T be a point in the target cluster, then a = H × b, and since H is invertible, b = H−1 × a. 
Combining these relationships and the ZNCC measurement, the forgery region can be further localized. 
First, if the number of keypoints in a group is less than a threshold (Tk), we will regard this group as 
unimportant and it will be discarded. The source subgroup with the matching points for each cluster is 
labeled as image I, and all the pixel points (x, y) in image I are converted to the new locations (x', y') in 
image W by using the Helmert parameters defined as Eq. (1). Therefore, a new image W of the same size 
is produced. Then, we create a ZNCC binary map using Eq. (3). 

In order to obtain the similarity and distance between image I and image W, we compute the ZNCC. In 
addition, we also define a correlation map to record the similarity between image I and image W. The ZNCC 
is defined as 
 
where I(x, y) and W(x, y) are the gray-level values at pixel (x, y) 
in I and Wrespectively, I¯¯¯I¯ and W¯¯¯¯¯W¯ are the mean gray-level values around pixel (x, y) in 
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the I and W, respectively, and m and n are the size of neighboring area centered at pixel (x, y). This 
distance range is the interval [− 1, 1] (1 indicates a perfect match, and 0 for “no correlation”). Figure 6 shows 
a profile for the transformation from image I to image W by using (1) and the ZNCC value (correlation map) 
by using (3). (x,y) is one of pixels in Image I, and m and n are set to 3. 

 

Fig. 6A profile of transformation from image I to image W by using (1) and ZNCC value labeled as correlation 
map. (x, y) is one of pixels in image I. m and n are set to 3 
 
Then, we apply a Gaussian filter to the correlation map in order to reduce the noisy pixels, and a binary 
correlation map is given by means of a threshold (Tb). If the ZNCC value for point (x, y) is greater than a 
threshold, this point (x, y) is assigned as true; otherwise, this point is assigned as false. Next, we will perform 
connected-component labeling on this binary map. This threshold, Tb, is set to 0.55, which is a value 
obtained through experimentation. 
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If the largest region involved in connected-component labeling touches the border of the binary map, it 
means that the range of this region is bigger than the range of the binary map, as shown in Fig. 7a. The top 
and right sections of this region touch the borders. Therefore, this region will be expanded in a rectangular 
interval along the touched border. The steps described above are repeated until the largest region does not 
touch the border, as shown in Fig. 7b. Based on an empirical value obtained in our experiments, the 
expanded range (Er) is multiplied the width or height of this sub-image by a factor of 1.25 depending on the 
direction of touching border. All points in image I are finished, the content of the binary correlation map is 
filled to the ZNCC binary map corresponding to the location. For instance, Fig. 8a shows the ZNCC binary 
map. Next, we combine the SLIC superpixel segmentation described in Section 2.1 to achieve the forgery 
region localization. 

 

Fig. 7 An example of the binary correlation map and extension. The red color indicates “true” in the 
correlation map. a The red region is the largest region after performing the connected-component 
operation. This region touched the top border and right border. b The result after extending the direction of 
the top and right borders 
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Fig. 8 The profile of the detection map. a ZNCC map. b SLIC segmentation. c Combined ZNCC map with 
SLIC segmentation. d Detection map 
 
The host image is segmented into many sub-regions by the SLIC algorithm. In the SLIC algorithm, the 
smaller the size of a superpixel (S), the greater the number of superpixels present. Moreover, very few true 
edges are missed. In contrast to increasing size, the number of superpixels is reduced, and many true 
edges will be missed. Therefore, in our approach, the size of a superpixel (S) is assigned to 300 pixels by 
experiments. For each sub-region, we will count the number of pixels that are considered true in the ZNCC 
binary map. If this number (Nd) is greater than a threshold in the relative sub-region, all the pixels in this 
sub-region are labeled as a detection map that serves as a part of forgery regions, as shown in green color 
areas of Fig. 8d. Afterwards, we label the connected components as the detection map, and delete the 
regions that have an area less than 0.1%. Finally, each of the remaining regions will use the convex-hull 
morphologic method to connect together in the binary detection map. Figure 8 illustrates the profile of the 
detection map. After performing our proposed method, we can efficiently detect and localize the forgery 
regions more precisely. 

4. Results and Analysis  

To verify the performance of the proposed image forensics, the experimental results are compared to 
Amerini et al. [13], Silva et al. [16], Pun et al. [18], and Li et al. [19] to perform the forgeries, including 
copying and translations, scaling, rotation, and compression. 

4.1 Experimental setup and datasets 
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Table 1 illustrates the parameters presented in the experiments. According to our experiments, we 
systematically vary the related thresholds within 50% to 200% and observe performance changes; 
afterwards, they are given, and some thresholds are derived from the literature [16, 31]. However, the 
assignment of these parameter values can be modified by the user based on the data. The experiments 
were implemented in Microsoft Visual Studio C#, on an Intel® core i5–4570@ 3.2 GHz computer with 4 GB 
of RAM running a Windows 7 64 bits platform. 
 
Table 1Setup for the parameters 

Parameter Value 

TNNDR [31]: a threshold for nearest neighbor distance 0.6 

Tc [16]: a threshold for making a subgroup 50 

Th: a threshold for making a group 10n, 

n: number of keypoints in group. 

Ne: the number of the extension 5 

Re: the range of each extension 0.25 

Sr: the rectangle search region 0.125 

Tk: a threshold for the number of keypoints in a group 5 

m, n: the size of computing ZNCC value 7 

Tb: a threshold 0.55 

Er: the expanded range 0.25 

S: a superpixel size 300 

Nd: the number of pixels with true in the ZNCC binary map 0.5 

We used nine public datasets for our demonstration. CMH1–4 datasets and a compressed dataset (CMH5) 
constructed by [16] contain sizes varying from 845 × 634 pixels (the smallest) to 1296 × 975 pixels (the 
biggest) and are stored in the PNG format. The D0–3 datasets constructed by [17] contain sizes of 
1000 × 700 pixels or 700 × 1000 pixels and stored in the BMP format. The CMH series datasets depict as 
follows. 

 CMH1: 23 images that were only copied and then translated. 
 CMH2: 25 images with a rotation of the duplicated region, the orientations are in the range of [−90∘, 

180∘]. 
 CHM3: 26 images with resizing of the duplicated region; the scaling range is between 80 and 154%. 
 CHM4: 34 images with rotation and resizing entirely. 
 CMH5: 108 images that are derived from 36 randomly selected images from the CMH1–4 datasets 

and compressed with a quality factor of 70%, 80%, 90%. 

The D0–3 datasets depict as follows. 
 D0 dataset: 50 images that are copied and translated. 
 D1 dataset: 600 images with a rotation of the duplicated region. This dataset is further subdivided 

into subsets. The first subset, D1.1, is created by rotating the copies with 11 different types of 
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rotation around the angle zero in the range of [−25∘, 25∘] with a step of 5∘. The second subset, D1.2, 
is created by rotating the copies with 12 different types in the range of [0∘, 360∘] with a step of 30∘. 
The third subset, D1.3, is created by rotating the copies with 11 different types in the range of [−5∘, 
5∘] with a step of 1∘ 

 D2 dataset: 320 images with resizing of the copied region. This dataset is subdivided into two 
subsets. The D2.1 subset is obtained by scaling the copies with 8 different scaling factors in the 
range of [0.25, 2] with a step of 0.25. The D2.2 subset is scaled by 11 scaling factors in the range 
of [0.75, 1.25] with a step of 0.05. 

 D3 dataset: 50 original images without tampering to verify the forensic ability between tampered 
and untampered images. 

Every image in every dataset has its own binary ground truth displaying the original and duplicated regions 
in white color. And the tampered region within the datasets is of a single region copied one time and stayed 
in the same image. 

4.2 Performance evaluation 

For performance evaluation, we used the precision, recall, F1 [8, 18], and the false positive rate (FPR) [16] 
to demonstrate our proposed method. These evaluation criteria are expressed as: 

 Precision: represents the probability that the detected regions are truly the forgery regions, as 
expressed in (4). 

precision=|TP||Ωretrieved|precision=|TP||Ωretrieved| 
where |Ωretrieved| denotes the number of the detected forgery pixels by our proposed method from the 
datasets, |TP| (true positive) represents the number of correctly detected forged pixels labeled as forged 
regions in the ground truth. 

 Recall: represents the probability that the forgery regions are detected, as expressed in (5). 

recall=|TP||Ωrelevant|.recall=|TP||Ωrelevant|. 
where |Ωrelevant| represents the ground truth forgery regions of the datasets. 

 F1: this score combines both the precision and recall into a signal value. It is calculated by (6). 

F1=2⋅precision⋅recallprecision+recall.F1=2⋅precision⋅recallprecision+recall. 
 FPR: indicates the percentage of incorrectly located tampering regions. It is defined as 

FPR=|FP||Ωnormal|,FPR=|FP||Ωnormal|, 
where |Ωnormal| represents the number of pixels that do not belong to the tampering regions in the ground 
truth, |FP| (false positive) denotes the number of wrongly detected as tampering pixels by our proposed 
method. 

Because the datasets have been tampered with in different ways, they are not consistent in our 
experiments, and therefore we compute the average values for these evaluation criteria in the dataset to 
verify the performance. As indicated above, the precision is the probability that a detected forgery is truly a 
forgery, and the recall is the probability that a forgery image is detected. Generally, a higher precision and 
a higher recall represent better performance. 

5.Results  

Regarding the different forgery images created by copying and translation, scaling, rotation, and 
compression, the experimental results are presented and discussed in the following section. 

5.1 Detection results for copying and translation 

The forgery images are simply copied and moved operations, such as the CMH1 and D0 datasets. 
Tables 2 and 3 illustrate the detected results compared to our proposed method and the methods of 
Amerini et al., Silva et al., Pun et al., and Li et al..Figure 9 presents several detection results for simple 
copying. 
Table 2 
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Detected results for CMH1 dataset under simple copies 

Method Recall (%) Precision (%) FPR (%) F1 (%) 

Proposed 96.50 97.66 2.31 97.08 

Amerini et al. [13] 93.57 94.52 5.41 94.04 

Silva et al. [16] 92.34 97.88 2.0 95.03 

Pun et al. [18] 92.00 92.93 6.99 92.46 

Li et al. [19] 98.17 57.64 72.14 72.63 

Table 3 Detected results for D0 dataset under simple copies 
 

Method Recall (%) Precision (%) FPR (%) F1 (%) 

Proposed 84.88 92.81 3.39 88.67 

Amerini et al. [13] 73.41 89.38 2.42 80.61 

Silva et al. [16] 64.14 82.02 1.89 71.99 

Pun et al. [18] 62.08 82.32 1.72 70.78 

 

6.Conclusion 

In this study, the major strategy of our proposed algorithm focuses on a single tampered region detection. 
And we have proposed keypoint-based image forensics for copy-move forgery images based on a Helmert 
transformation and SLIC superpixel segmentation. Compared to the sliding window approach, the keypoint-
based technique can be applied at a lower computational cost because of the significantly reduced number 
of points required. In addition, we use the Helmert transformation to estimate the geometric relationships 
between matching pairs and to work the merging clusters. On the other hand, we use an SLIC algorithm to 
localize the tampering regions more precisely. Based on these strategies, we can keep much more 
important information to conduct image forensics. 

As previously presented in the experiments, it is clear that the proposed method is highly robust against 
many kinds of forged images, such as geometric transformations (scaling, rotation) and JPEG compression. 
However, the current method is not robust against symmetric, recurring, and smooth patterns for tampering 
region. Progress in detecting symmetric, recurring, smooth forgery images, and tampering region copied 
multiple times will be a major focus in the future. 
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