
Software Testing – A test case design with good understanding: Hari.M. et al, AJB, 1(1):37- 39, August 2019.

37

American Journal of Bioinformatics
1(1):37 - 39, August 2019

Research Paper

Software Testing - A Test Case Design with Good Understanding.

1 M.Hari, 2J.Rajendra Reddy.
1

Head &
2

Lecturer, Dept. of Computer Science Applications, CSSR & SRRM Degree & PG College, Kamalapuram, Kadapa-516289,A.P., India.

To cite this article: M.Hari, and J.Rajendra Reddy. Software Testing: A test case design with good understanding. American Journal of
Bioinformatics, 1(1):37- 39, August 2019.

Email: mudigoti.1986@gmail.com

Received9
th

 June 2019.│Revised: 20
th

 June 2019.│Accepted: 28
th

 June 2019.

© AJB This is an open access article under the CC BY-NC license (https://creativecommons.org/licenses/by-nc/4.0/).

Abstract: A Test case is a series of steps designed to test the correctness of software functionality or an important part of an application. Test

cases are accepted to be simple and easily understandable. The classic objective of test cases or testing in general is to find defects. A best test
case has identifies an error with good probability. When someone reads a test case for the first time, he or she should be able to understand
and execute a script without any assistance. Below are certain conventions and guidelines which are to be followed while writing good test
cases. Test cases are tricky objective because assessing the quality is multi-dimensional. Still if a tester is able to detect a good number of
defects, then test are said to be of good quality. However, if test cases are not exhaustive in nature then the product might fail under
conditions that were not covered as a test case. The best, one can do is to introduce different types of testing and ad-hoc testing so that
there is enough room to cover any gaps in test cases. One or more test cases should be designed to test one requirement. Effort should be
made not to have too many requirements mapped to a single test case. Tracking becomes easier, and is good to have at least one test case
per requirement and also yields good test results. Check should be made to verify if the test cases have all the functionalities and
requirements covered as per Requirement Traceability Matrix.

 Keywords: Testing, Test Case, Quality, Design, defects, understanding.

1. Introduction

 A Test case is a series of steps designed to test the correctness of
software functionality or an important part of an application. Test
cases are accepted to be simple and easily understandable. The
classic objective of test cases or testing in general is to find defects. A
best test case has identifies an error with good probability. When
someone reads a test case for the first time, he or she should be
able to understand and execute a script without any assistance.
Below are certain conventions and guidelines which are to be followed
while writing good test cases. Test cases are tricky objective because
assessing the quality is multi-dimensional. Still if a tester is able to
detect a good number of defects, then test are said to be of good
quality. However, if test cases are not exhaustive in nature then the
product might fail under conditions that were not covered as a test
case. The best, one can do is to introduce different types of testing
and adhoc testing so that there is enough room to cover any gaps in
test cases. One or more test cases should be designed to test one
requirement. Effort should be made not to have too many
requirements mapped to a single test case. Tracking becomes easier,
and is good to have at least one test case per requirement and also
yields good test results. Check should be made to verify if the test
cases have all the functionalities and requirements covered as per
Requirement Traceability Matrix.

2. How to Derive the Test Cases

Deriving test cases from use cases can be easily done, as the use
case has all sort of information needed for writing test cases?
Testing a system using use cases is kind of decision driven testing.
We should know the methods and thought processes to recognize
test cases from use cases. First of all, we have to draw a model of
the use case, based on the use case flow of events and showing the
main system user interactions.

Figure - 1: Derivation of the test cases

Validations
Enter

inputs

Successful

output

Validations

Software Testing – A test case design with good understanding: Hari.M. et al, AJB, 1(1):37- 39, August 2019.

 38

2.1. Test case design with good understanding

One needs to have a thorough knowledge of the application and or
domain to design good test cases. Test case quality can be
attained by writing test cases in conjunction with understanding
the business requirements, which can be achieved by going through
the Use Cases and all other requirement documents. As a tester, it is
important that one makes sure that each and every point mentioned
in the business requirement is addressed in test cases and tested
with due importance. An easy and effective way to write test case
without having missed any requirement is to extract as much test
conditions as possible, covering all the main flows and alternate
flows specified in a Use Case and additional requirements if any. But
there is always an effort that has to be put constantly with time in
maintaining test scripts as and when there are some changes or
updates being made in requirements. However for better efficiency
and test coverage, a tester should be prepared with a wide variety
of approaches than only testing based on requirements.

2.2. Correctness of the Test Case

Many times it happens that a test case is wrongly scripted or is not
a valid one while executing it. It is important for a tester to know
the applicability and correctness of a test case in a given time. The
change in requirements may lead to maintain/modify the test cases
and sometimes removal the same if they are identified as out of
scope. Efforts like thorough review and rework should be made to
mitigate the risk of requirements being misinterpreted while
scripting the test cases.

2.3. Test Case Design Techniques

The Test Case design techniques are associated with the type of
testing performed. A Functional test technique is also called as
'black box' test technique and the common forum is that we are
'doing black box testing'. A functional test technique will help
design test cases based on functionality of component or system
under test, without necessarily having to understand underlying
detail of software design. Consider functionality of system of
determine test inputs and expected results.

2.4. Equivalence

Situations (Two or more) are equivalent if they produce essentially
the same behavior. If one situation works properly, then it can
simply be assumed that the others are correct and need not be
tested them all. There are 4 accounts A, B, C and D. Accounts A and
B are of same account type and has valid amount for transaction. If
transaction is tested between A and D, then there is no need of
testing same transaction between B and D.

2.5. Boundary Value

Boundary value testing (positive and negative) test cases are
needed. Most of the errors produced to congregate at the
boundaries. According to “Transfer Funds” use case, the transaction
amount should be less than the available balance of “From
Account” and greater than “Zero”. Hence the positive and negative
test cases should mainly focus on the boundaries.

2.6. Error Guessing

The test cases are developed by the experienced Test Engineers. For
example, where one of the inputs is the date, a test engineer might
try July 24, 2000 or 9/9/99.

2.7. Input based Test Techniques

The input data is very important and it can break the system, if the
error handling modules are not developed correctly. Once the
inputs are recognized, we need to figure out possible set of values,
which leads the flow. The variations of input data values (valid and
invalid) are adequate for testing. All valid and invalid initial states
must be established for the inputs to produce the expected output.

3. Test Case Design Templates

For every identified Test Case a detailed designing should be
Prepared in an appropriate format having the following fields.

Test-Case Id: A unique number for a test case.
Test-Case Scenario: Scenario of the test case and the objective of
the test case should be described.
Test Data: Test data that has been set up to execute a given test
case. Also there should be a mention if this given data is/not
reusable.
Pre-req: Pre-requisite/precondition to execute the test case
 Post-condition: Post-condition after the test case is successfully
run.
Revision History: Revision history to know when and by whom it is
created or modified Test Step Number: Step number in incremental
fashion and also get the total no. of Steps in a test case
Test Steps (Design): Detailed description of every Step of test
execution
Expected Results: Detailed description of the expected result for
corresponding test Steps respectively based on the requirements.
Present Results: The result of the action for the given data and how
the system reacts for the given data said by the present results.
Pass/Fail: If the Expected and Present results are same then test is
Pass otherwise Fail.
A Part from these, one is expected to follow certain test case
standards imposed by the organization.

4. Types of Test Cases

4.1. System Test Cases

The system test cases meant to test the system as per the
requirements; end to end. Basically to make sure that the application
works as per SRS. In system test cases (generally system testing
itself), the testers are supposed to act as an end user. The system test
must focus on functional groups, rather than identifying the Program
units. When it comes to system testing, it is assume that the
interfaces between the modules are working fine. (Integration
passed). Ideally the test cases are nothing but a union of the
functionalities tested in the unit testing and the integration testing.
Instead of testing the system inputs outputs through database or
external Programs, everything is tested through the system itself. For
example, in online shopping application, the catalog and
administration screens (program units) would have been
independently unit tested and the test results would be verified
through the database. In system testing, the tester will mimic as an
end user and hence checks the application through its output. There

Software Testing – A test case design with good understanding: Hari.M. et al, AJB, 1(1):37- 39, August 2019.

 39

are occasions, where some/many of the integration and unit test
cases are repeated in system testing also; especially when the units
are tested with test stubs before and not actually tested with other
real modules, during system testing those cases will be performed
again with real modules/data.

4.2. Path Based Test Cases

To count the number of paths exists in our model and we have to
identify the set of test cases needed to exercise the paths through
the “Funds Transfer” use case. After identifying the test cases, the
feasibility of the test cases is to be analyzed. If the Credit card
account is selected as “From Account”, then a warning message will
be shown as “Interest charge will be occurred for the transaction”.
Hence there are two possible flows,

 Selecting Non-Credit card account as from account.

 Selecting Credit card account as from account.

4.3. Test Case Design Reviews

To ensure that test cases are effective and of good value and the test
case review has to be thorough. Often, reviews are ignored owing to
time constraints. As Test Cases are considered as a deliverable as far
as testing team is concerned, it is important to ensure that test cases
are designed to effectively test the product and in such a way that all
possible defects come out of the scripts only. Thorough reviews are
done during each phase of testing. Let us consider the Test case
review Part of It for our ease. Test Case review is not only
concentrated. on reviewing the content of a test case, but also in
identifying the gaps for missed requirements if any and degree to
which test coverage is achieved. It is said to be a good practice for a
tester to do a round of self-review before sending the scripts for a
peer review or group review. This minimizes the effort spent on
reviewing as well as the chances of correction at an Initial stage of
test case design. Review comments coming out of self- review, peer
review and group review are tracked in tracking tools.. The reviewer
opens a defect and assigns it to the designer of the test case. The
designer of the script then reworks on the scripts and closes the
defect.

Checklist for Test Case review

 Has the correct template been used?

 Have all the expected details to be mentioned in the test
case correctly filled in?

 Has the test data set up been done? Has it been included in
the test case?

 Have all the positive and negative scenarios, boundary
value conditions been covered in test cases?

 Are all scripts free from grammatical and formatting errors?

 Have the Steps been correctly written in appropriate
sequence for each test case?

 Have the expected results clearly stated how the system
should behave for each Step or action?

 Have all the requirements been addressed in test cases?

 Has the navigation correctly documented in test Steps
without any discrepancies?

 Has the naming convention used for Test Scenarios and
Test Cases as per the standards?

5. Conclusion

Software testing is the process used to assess the quality of software
and it may be viewed as an important part of the software quality
assurance. A mistake made by the programmer, the results in a error
in the software source code. If error is executed, in some situations
the system will produce false results. A problem with software testing
is that testing all combinations of inputs and pre conditions are not
feasible when testing anything other than a simple product. All test
cases should be traceable to all requirements and test case should be
planned ahead of execution. Certain bugs easier to find in testing and
most of the defects are uncovered at the initial stages by using
reviews. A high standard of finding undiscovered errors are possible
through successful test case design. Test plans and test cases were
developed in the analysis phase and they are revised. A successful
test case design is discussions and experience work.

References

1. Lee Copeland. A practitioner's guide to software test design. First
Edition, Artech house, incorporated.

2. Roger.S.Pressman. Software engineering- a practitioner’s approach.
seventh edition, Mc Graw hills international edition.

3. Paul.C.Jorgensen . Software testing - a craftsman's approach. 4th
edition, Pearson Education.

4. C.Kaner. Test ing computer software .2nd edit ion, Wiley
publ icat ions.

5. http://www.onestoptesting.com/test-cases/designing.asp
6. http://www.onestoptesting.com/test-cases/template.asp
7. http://www.onestoptesting.com/test-cases/good-test-case.asp
8. https://www.utest.com/articles/how-to-design-test-cases-for-testing-

part-1-equivalence-partitioning

9. http://www.softwaretestinggenius.com/how-to-design-a-good-test-
case-for-performance-testing

http://www.amazon.com/gp/product/0849374758?tag=sw-testing-books-20
http://www.amazon.com/gp/product/0849374758?tag=sw-testing-books-20
http://www.amazon.com/gp/product/0471358460?tag=sw-testing-books-20
http://www.onestoptesting.com/test-cases/designing.asp
http://www.onestoptesting.com/test-cases/template.asp
http://www.onestoptesting.com/test-cases/good-test-case.asp
https://www.utest.com/articles/how-to-design-test-cases-for-testing-part-1-equivalence-partitioning
https://www.utest.com/articles/how-to-design-test-cases-for-testing-part-1-equivalence-partitioning
http://www.softwaretestinggenius.com/how-to-design-a-good-test-case-for-performance-testing
http://www.softwaretestinggenius.com/how-to-design-a-good-test-case-for-performance-testing

