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Abstract 

Outdoor images can be degraded due to the particles in the air that absorb and scatter light. The produced 
degradation generates contrast attenuation, blurring, and distortion in pixels, resulting in low visibility. These 
limit the efficiency of computer vision systems such as target tracking, surveillance, and pattern recognition. 
In this paper, we propose a fast and effective method, through modification in the computation of the dark 
channel which significantly reduces the artifacts generated in the restored images presented when using 
the ordinary dark channel. According to our experimental results, our method produces better results than 
some state-of-the-art methods in both efficiency and restoration quality. The processing time in tests shows 
that the method is adequate for images with high-resolution and real-time video processing.  
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1. Introduction 

The presence of environmental disturbances such as haze and smog gives outdoor images and videos 
undesirable characteristics that affect the ability of computer vision systems to detect patterns and perform 
an efficient feature selection and classification. These characteristics are caused by the decrease in 
contrast and color modification originated by the presence of suspended particles in the air. Hence, the task 
of removing the haze, fog, and smog (dehazing), without compromising the image information, takes on 
special relevance. Therefore, to improve the performance of systems such as surveillance [1], traffic [2], 
self-driving vehicles [3] is essential to develop new and better dehazing methods. This problem has been 
studied extensively in the literature with two main approaches: methods that use multiple images [4] and 
methods that use just a single image [1]. 

Within the single-image approach, some results can be mentioned relevant results, such as the obtained 
by Tan et al. [5], Fattal [6], and Tarel et al. [7] where the main problem of these proposed methods is the 
time processing required and that the proposed methods are not based on solid physics concepts. The 
most studied method in the literature is presented by He et al. [8] where the dark channel prior (DCP) is 
introduced. The DCP is a simple but effective approach in most cases, although it produces artifacts around 
regions where the intensity changes abruptly. Usually, in order to eliminate the artifacts, a refinement stage 
is necessary, which has an impact on time processing [1, 9]. To get around this problem, He et al. [8] uses 
a soft-matting process, Gibson et al. [10] proposed a DCP method based on the median operator. Zhu et 
al. [11] introduced a linear color attenuation prior, and Ren et al. [12] used a deep multiscale neural network. 

This paper presents a fast novel method in which a modified dark channel is introduced, improving the 
quality of the depth estimations of the image elements and reducing significantly the artifacts generated 
when the traditional dark channel is used. The modification of the proposed dark channel, unlike most state-
of-the-art methods, makes a refinement stage unnecessary; this has a positive impact on the simplicity and 
speed of the dehazing process. Experimental results demonstrate the effectiveness of the proposed 
method, and when compared with three state-of-the-art methods, the proposed method achieves a higher 
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restoration quality and requires significantly less time. The paper is organized as follows. In Section 2, the 
image degradation model and the dark channel prior used is discussed. The proposed method is presented 
in Section 3. In Section 4, experimental results and analysis are shown. The conclusions are described in 
Section 5. 

  2.Literature survey 
 

In this section, we briefly describe the related methods that apply to our proposed approach. 

2.1 Superpixel segmentation 

One type of image segmentation method is called the superpixel segmentation method. It groups the pixels 
of an image into perceptually meaningful atomic regions that can be used to replace the rigid structure of 
the pixel grid. A simple linear iterative clustering (SLIC)-based superpixel algorithm is proposed by Achanta 
et al. [29]. It uses a k-means clustering approach to efficiently generate superpixels, and it can adhere to 
the boundaries very well. The only parameter (k) in the SLIC algorithm is to assign the desired number of 
approximately equally sized superpixels. The algorithm is briefly described in the following paragraph. 
Details of the procedures have been reported in [29]. 

This SLIC algorithm is adopted in CIELAB color space. The SLIC algorithm adapts a k-means clustering 
approach to efficiently generate the superpixels, and it adheres to the boundaries very well. First, the 
clustering procedure begins with an initialization step where the k initial cluster centers, where (l, a, b) are 
the three color components of a pixel, and (x, y) are its two spatial coordinates, are sampled on a regular 
grid (called a superpixel), spaced S pixels apart. The S interval is N/k−−−√N/k, in which Nrepresents the 
number of pixels for an image. In order to avoid centering a superpixel on an edge or on a noisy pixel, the 
centers are moved to seed locations corresponding to the lowest gradient position in 
a n × n neighbCi = [li, ai, bi, xi, yi]T, i = 1, 2, ⋯, k,orhood. As is known to us, the edge or noisy pixel is often 
positioned on a pixel point that has the largest gradient variation. Therefore, selecting the lowest gradient 
pixel point to position the center for a superpixel can efficiently reduce the chance of seeding a superpixel 
with an edge or a noisy pixel. 
Additionally, in order to speed up the SLIC algorithm, the search area is reduced to the size of 
2S × 2S around the superpixel center, in contrast to the traditional K-means clustering method. Then, by 
computing the distance between the center point and other pixel points within the cluster, an update step 
adjusts the cluster centers to be the mean vector of all the pixels belonging to the cluster, once each pixel 
has been associated to the nearest cluster center. The residual error is computed by means of the L2 norm 
between the new cluster center locations and previous cluster center locations. Finally, the assignment and 
updated steps can be repeated iteratively until the error converges. As [29] discussed, after iterating ten 
times, most images can achieve the convergence. Figure 1 shows an example of SLIC segmentation for a 
superpixel that is roughly the size of 300 pixels. 
 

In our work, since all points lie in a plane, the Helmert transform becomes transformations from one 
rectangular coordinate system to another rectangular system. These transformations include rotation, 
scaling, and translations for all points. The transformation equations can be formed in matrix notation using 
mathematical operations [30]. 
[XpYp]=[A−BBA][xpyp]+[txty],[XpYp]=[AB−BA][xpyp]+[txty], 
(1) 

where (xp, yp) coordinates are transformed into (Xp, Yp) coordinates by the addition of 
translations tx and ty. A and B are the transformation parameters. This transformation is called the Helmert 
transformation [30], also known as similarity transformation. Helmert transformations have a lower degree 
of freedom, therefore they have lower computational complexity available to transform the coordinates of 
points in one point (x, y) into coordinates in another point (X, Y). As shown in Eq. (1), only four parameters 
are needed to compute the coordinate transformations, such as rotation, scaling, and translations. In 
addition, a well-known transformation known as the affine transformation usually uses map coordinate 
transformations. However, affine transformations require six parameters to achieve transformations. The 
advantages of the Helmert transformation include not only resistance to rotation, scaling, and translations, 
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but also reduced computational complexity. For instance, given the coordinates of two pairs, we can obtain 
four parameters of Helmet transformation by Eq. (1). Hence, in our experiments, we adopt the Helmert 
transformation instead of affine transformation to acquire the coordinates after transformation. 

3. Proposed Method   

In this study, we propose keypoint-based image forensics based on the Helmert transformation and SLIC 
algorithm. The main procedures include keypoint extraction and matching, clustering and group merging, 
and forgery region localization and refining. Figure 2 illustrates the flowchart of the proposed system. 
Details of procedures are described in the following subsections. 
 
3.1 Keypoint extraction and matching 

Based on the SIFT algorithm [22], we can obtain all candidates of keypoints and the corresponding 
descriptors for an image. Using these candidates, we will search for the best matching pairs to perform 
additional grouping. 

First, each keypoint within all candidates will compute the Euclidean distance between other keypoints via 
corresponding descriptors, and will also perform the matching operation. The nearest neighbor distance 
ratio (NNDR) [31], which is the ratio of the smallest distance to the second-smallest distance, is used to 
perform the matching. This ratio is depicted as 
D(A,B)D(A,C)≤TNNDR,D(A,B)D(A,C)≤TNNDR, 
 

where D is the Euclidean distance between the descriptors of two keypoints, keypoints A and B are the 
nearest neighbors, and keypoint A and keypoint C are the second-nearest neighbor. TNNDR is a constant 
value. If Eq. (2) is satisfied, keypoints A and B are regarded as a matching pair. Generally, keypoint A is 
the source point and keypoint B is the target point. Our approach uses the Euclidean distance between 
descriptors to estimate the similarities. 

After computing the distances for all keypoints, we can obtain all matching pairs in an image. In order to 
avoid incorrect matching pairs, if the distance between matched pairs is less than TNNDR, they will be ignored 
and deleted. 

3.2 Clustering and group merging 

Our clustering strategy includes clustering and group combining. We improve the clustering method 
proposed in [16] to perform the coarse clustering process. A clustering yields two match groups: source 
and destination. They are considered as correspondent regions inside the image and are good cloning. In 
[16], the clustering strategies only used spatial distance and correspondence angle between matched pairs 
to perform the clustering. However, when the forgery region is too large, it could result in the matching pairs 
belonging to the same group that are assigned to the different groups, as shown in Fig. 3. That is, a group 
may be segmented into many subgroups. In Fig. 3, the red subgroups could not be merged together into a 
group, and the blue subgroups could not be merged together either. 
 
Hence, in order to solve this problem, we improve the clustering strategies proposed by [16] to achieve the 
coarse clustering. The modified clustering schemes are described by the following. Given any two matching 
pairs belonging to corresponding subgroups (source and target subgroups), they are considered as 
correspondent regions in an image and are tampering candidates. 

 Spatial adjacency: consider that we have a match pair between keypoints A and Bbelonging to 
group G. Keypoint A might belong to the Gsource subgroup, and keypoint B might belong to the 
Gtarget subgroup, or vice versa. For a subgroup to admit a paired keypoint as a new member, the 
spatial distance between the keypoint and its nearest keypoint in such a subgroup needs to be 
smaller than a predefined threshold, Tc. Moreover, it is necessary to analyze both matched 
keypoints, since they have to be in the same group, but in different subgroups. 

 The angle consistency: the angle in the range of [0∘, 360∘] with a 15∘ step is used to determine the 
angle consistence. It can obtain 24 range partitions. As described above, a new 
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keypoint A candidate to be included into Gsource will be included in Gsource, only if the angle of the 
line that connects the candidate point A and its matching point B stays in the same range of the 
other points in Gsource. 

After performing coarse clustering, we will further merge these clusters based on the Helmert transformation 
and spatial adjacent relationship between clusters. Therefore, the transformation can efficiently merge 
some clusters with a high correlation into a compact cluster. A Helmert transformation is used to describe 
the relationships between two different coordinate systems without distortion. In 2D space, the Helmert 
transformation is defined as Eq. (1). We use the Helmet transformation to analyze the geometric 
relationships between matching pairs. Assuming that the number of keypoints in a cluster is greater than 
one, we will compute the Helmert parameters of the cluster (source and target subgroup); otherwise, this 
cluster will be discarded. For instance, given any two matching pairs, by assuming that (Xp, Yp) are target 
coordinates and (xp, yp) are source coordinates, the transformation can easily compute and obtain four 
Helmert parameters by Eq. (1). 

Assuming that there is a keypoint from another group, C′, within the search range we specified, this keypoint 
will be checked whether it belongs to source or target subgroup. It is because we do not constrain which 
keypoint stays in source or target subgroup for a matching pair in the previous matching process. During 
the matching process, the same region may be clustered into different groups, and the matching pairs may 
stay in the subgroup opposite to the other, as shown in Fig. 4a. Assuming that this keypoint belongs to the 
target subgroup in group C′, we will exchange all members in the target subgroup with those of the source 
subgroup in group C′, as shown in Fig. 4b. Afterwards, we transform all members in the source subgroup 
for group C′ to new members in target subgroup by means of the Helmert parameters derived from group C. 
Then, we will compute the difference in the spatial coordinates between target keypoints in group C and 
new target keypoints in group C′. When this difference is smaller than a threshold, Th, two groups are 
merged and then Helmert parameters derived from group C are updated. Based on our experimental test, 
we assigned the threshold value, Th = 10n, where n denotes the number of keypoints in the group. 
 

Fig. 4 An example for clustering profile. a The matching pairs stay in the opposite subgroup corresponding 
to group C and group C′ in the same region. b Clustering objective 
Next, we use a rectangular search range, which is defined as (xmax, ymax, xmin, ymin) belonging to the lower 
right and upper left coordinates of keypoints in source subgroup, to perform group merging. The target 
subgroup also creates a rectangular search range. If there is no keypoint presented in the rectangular 
search range, this rectangular range will expand the search range to find other clusters until one of the 
terminal conditions is satisfied. The terminal conditions are defined as follows. 

1.The number of the extension (Ne) has reached a value of five, and there is no cluster that can be 
combined. Here, the range of each extension (Re) is multiplied the rectangle searching region by a factor 
of 1.25. 

 2.The rectangle search region (Sr) is greater than 0.125 times of size of a host image. 
 Repeat the above steps until no clusters can be combined. Finally, we remove the invalid clusters that 
involve less than five keypoints. 

Then, we apply a Gaussian filter to the correlation map in order to reduce the noisy pixels, and a binary 
correlation map is given by means of a threshold (Tb). If the ZNCC value for point (x, y) is greater than a 
threshold, this point (x, y) is assigned as true; otherwise, this point is assigned as false. Next, we will perform 
connected-component labeling on this binary map. This threshold, Tb, is set to 0.55, which is a value 
obtained through experimentation. 

If the largest region involved in connected-component labeling touches the border of the binary map, it 
means that the range of this region is bigger than the range of the binary map, as shown in Fig. 7a. The top 
and right sections of this region touch the borders. Therefore, this region will be expanded in a rectangular 
interval along the touched border. The steps described above are repeated until the largest region does not 
touch the border, as shown in Fig. 7b. Based on an empirical value obtained in our experiments, the 
expanded range (Er) is multiplied the width or height of this sub-image by a factor of 1.25 depending on the 
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direction of touching border. All points in image I are finished, the content of the binary correlation map is 
filled to the ZNCC binary map corresponding to the location. For instance, Fig. 8a shows the ZNCC binary 
map. Next, we combine the SLIC superpixel segmentation described in Section 2.1 to achieve the forgery 
region localization. 
 
The host image is segmented into many sub-regions by the SLIC algorithm. In the SLIC algorithm, the 
smaller the size of a superpixel (S), the greater the number of superpixels present. Moreover, very few true 
edges are missed. In contrast to increasing size, the number of superpixels is reduced, and many true 
edges will be missed. Therefore, in our approach, the size of a superpixel (S) is assigned to 300 pixels by 
experiments. For each sub-region, we will count the number of pixels that are considered true in the ZNCC 
binary map. If this number (Nd) is greater than a threshold in the relative sub-region, all the pixels in this 
sub-region are labeled as a detection map that serves as a part of forgery regions, as shown in green color 
areas of Fig. 8d. Afterwards, we label the connected components as the detection map, and delete the 
regions that have an area less than 0.1%. Finally, each of the remaining regions will use the convex-hull 
morphologic method to connect together in the binary detection map. Figure 8 illustrates the profile of the 
detection map. After performing our proposed method, we can efficiently detect and localize the forgery 
regions more precisely. 

4. Results and Analysis  

To verify the performance of the proposed image forensics, the experimental results are compared to 
Amerini et al. [13], Silva et al. [16], Pun et al. [18], and Li et al. [19] to perform the forgeries, including 
copying and translations, scaling, rotation, and compression. 

4.1 Experimental setup and datasets 

Table 1 illustrates the parameters presented in the experiments. According to our experiments, we 
systematically vary the related thresholds within 50% to 200% and observe performance changes; 
afterwards, they are given, and some thresholds are derived from the literature [16, 31]. However, the 
assignment of these parameter values can be modified by the user based on the data. The experiments 
were implemented in Microsoft Visual Studio C#, on an Intel® core i5–4570@ 3.2 GHz computer with 4 GB 
of RAM running a Windows 7 64 bits platform. 
Every image in every dataset has its own binary ground truth displaying the original and duplicated regions 
in white color. And the tampered region within the datasets is of a single region copied one time and stayed 
in the same image. 

4.2 Performance evaluation 

For performance evaluation, we used the precision, recall, F1 [8, 18], and the false positive rate (FPR) [16] 
to demonstrate our proposed method. These evaluation criteria are expressed as: 
Precision: represents the probability that the detected regions are truly the forgery regions, as expressed 
in (4). 

precision=|TP||Ωretrieved|precision=|TP||Ωretrieved| 
where |Ωretrieved| denotes the number of the detected forgery pixels by our proposed method from the 
datasets, |TP| (true positive) represents the number of correctly detected forged pixels labeled as forged 
regions in the ground truth. 
Recall: represents the probability that the forgery regions are detected, as expressed in (5). 

recall=|TP||Ωrelevant|.recall=|TP||Ωrelevant|. 
where |Ωrelevant| represents the ground truth forgery regions of the datasets. 
F1: this score combines both the precision and recall into a signal value. It is calculated by (6). 

F1=2⋅precision⋅recallprecision+recall.F1=2⋅precision⋅recallprecision+recall. 
FPR: indicates the percentage of incorrectly located tampering regions. It is defined as 

FPR=|FP||Ωnormal|,FPR=|FP||Ωnormal|, 
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where |Ωnormal| represents the number of pixels that do not belong to the tampering regions in the ground 
truth, |FP| (false positive) denotes the number of wrongly detected as tampering pixels by our proposed 
method. 

Because the datasets have been tampered with in different ways, they are not consistent in our 
experiments, and therefore we compute the average values for these evaluation criteria in the dataset to 
verify the performance. As indicated above, the precision is the probability that a detected forgery is truly a 
forgery, and the recall is the probability that a forgery image is detected. Generally, a higher precision and 
a higher recall represent better performance. 

5.Results  

Regarding the different forgery images created by copying and translation, scaling, rotation, and 
compression, the experimental results are presented and discussed in the following section. 

The forgery images are simply copied and moved operations, such as the CMH1 and D0 datasets. 
Tables 2 and 3 illustrate the detected results compared to our proposed method and the methods of 
Amerini et al., Silva et al., Pun et al., and Li et al..Figure 9 presents several detection results for simple 
copying. 
Table 2 
6.Conclusion 

In this study, the major strategy of our proposed algorithm focuses on a single tampered region detection. 
And we have proposed keypoint-based image forensics for copy-move forgery images based on a Helmert 
transformation and SLIC superpixel segmentation. Compared to the sliding window approach, the keypoint-
based technique can be applied at a lower computational cost because of the significantly reduced number 
of points required. In addition, we use the Helmert transformation to estimate the geometric relationships 
between matching pairs and to work the merging clusters. On the other hand, we use an SLIC algorithm to 
localize the tampering regions more precisely. Based on these strategies, we can keep much more 
important information to conduct image forensics. 

As previously presented in the experiments, it is clear that the proposed method is highly robust against 
many kinds of forged images, such as geometric transformations (scaling, rotation) and JPEG compression. 
However, the current method is not robust against symmetric, recurring, and smooth patterns for tampering 
region. Progress in detecting symmetric, recurring, smooth forgery images, and tampering region copied 
multiple times will be a major focus in the future. 
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